首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

2.
The steady-state cornering behaviour of rear-wheel drive vehicles fitted with locked differential is critically analysed by means of simple, albeit carefully formulated, vehicle models, which allow for a rigorous theoretical analysis. Results obtained for some classical manoeuvres, with either constant forward speed, steer angle or turning radius, clearly show that, in the case of locked differential, the vehicle cornering behaviour is strongly affected by the manoeuvre. As an important consequence, the handling diagram is not unique and the understeer gradient is no longer dependent only upon the lateral acceleration, as in vehicles equipped with an open differential. Accordingly, this study shows that some typical tools and concepts of vehicle dynamics are indeed inadequate in the case of locked differential.  相似文献   

3.
研究分析了一些对汽车操纵稳定性产生影响的主观和客观因素,为改善汽车操纵稳定性提供理论依据。  相似文献   

4.
ABSTRACT

The handling characteristic is a classical topic of vehicle dynamics. Usually, vehicle handling is studied by analyzing the understeer coefficient in quasi-steady-state maneuvers. In this paper, experimental tests are performed on an electric vehicle with four independent motors, which is able to reproduce front-wheel-drive, rear-wheel-drive and all-wheel-drive (FWD, RWD and AWD, respectively) architectures. The handling characteristics of each architecture are inferred through classical and new concepts. The study presents a procedure to compute the longitudinal and lateral tire forces, which is based on a first estimate and a subsequent correction of the tire forces that guarantee the equilibrium. A yaw moment analysis is performed to identify the contributions of the longitudinal and lateral forces. The results show a good agreement between the classical and new formulations of the understeer coefficient, and allow to infer a relationship between the understeer coefficient and the yaw moment analysis. The handling characteristics vary with speed and front-to-rear wheel torque distribution. An apparently surprising result arises at low speed: the RWD architecture is the most understeering configuration. This is discussed by analyzing the yaw moment caused by the longitudinal forces of the front tires, which is significant for high values of lateral acceleration and steering angle.  相似文献   

5.
In 2004, a new searching algorithm for Magic Formula tyre model parameters was presented. Now, a summary of the results, for pure and combined slip, that this algorithm is able to achieve is presented. The Magic Formula tyre model needs a set of parameters to describe the tyre properties. The determination of these parameters is dealt with in this article. A new method, called IMMa Optimization Algorithm (IOA), based on genetic techniques, is used to determine these parameters. Here, we show the computational cost that has been used to obtain the optimum parameters of every characteristic of the Magic Formula tyre model, called Delft Tyre 96. The main advantages of the method are its simplicity of implementation and its fast convergence to optimal solution, with no need of deep knowledge of the searching space. Hence, to start the search, it is not necessary to know a set of starting values of the Magic Formula parameters (null sensitivity to starting values). The search can be started with a randomly generated set of parameters between [0, 1]. Nowadays, MF-Tool, an application developed by TNO, uses an optimization technique to fit Magic Formula parameters from Matlab toolbox [van Oosten, J.J.M. and Bakker, E., 1993, {Determination of magic tyre model parameters}. Vehicle System Dynamics, 21, 19–29; van Oosten, J.J.M., Savi, C., Augustin, M., Bouhet, O., Sommer, J. and Colinot, J.P., 1999, {Time, tire, measurements, forces and moments, a new standard for steady state cornering tyre testing}. EAEC Conference, Barcelona, 30 June–2 July.]. We refer to that algorithm as the starting value optimization technique. The comparison between the optimization technique employed by TNO and the proposed IOA method is discussed in this article. In order to give a relative idea of adjustment accuracy, the sum-squared error and the mean-squared error, from the curves of the tyre model with the parameters optimized by both applications compared with test data are evaluated.  相似文献   

6.
Pacejka's Magic Formula Tyre Model is widely used to represent force and moment characteristics in vehicle simulation studies meant to improve handling behaviour during steady-state cornering. The experimental technique required to determine this tyre model parameters is fairly involved and highly sophisticated. Also, total test facilities are not available in most countries. As force and moment characteristics are affected by tyre design attributes and tread patterns, manufacturing of separate tyres for each design alternative affects tyre development cycle time and economics significantly. The objective of this work is to identify the interactions among various tyre design attributes-cum-operating conditions and the Magic Formula coefficients. This objective is achieved by eliminating actual prototyping of tyres for various design alternatives as well as total experimentation on each tyre through simulation using finite element analysis. Mixed Lagrangian–Eulerian finite element technique, a specialized technique in ABAQUS, is used to simulate the steady-state cornering behaviour; it is also efficient and cost-effective. Predicted force and moment characteristics are represented as Magic Formula Tyre Model parameters through non-linear least-squares fit using MATLAB. Issues involved in the Magic Formula Tyre Model representation are also discussed. A detailed analysis is made to understand the influence of various design attributes and operating conditions on the Magic Formula parameters. Tread pattern, tread material properties, belt angle, inflation pressure, frictional behaviour at the tyre–road contact interface and their interactions are found to significantly influence vehicle-handling characteristics.  相似文献   

7.
In this paper, a vehicle's lateral dynamic model is developed based on the pure and the combined-slip LuGre tyre models. Conventional vehicle's lateral dynamic methods derive handling models utilising linear tyres and pure-slip assumptions. The current article proposes a general lateral dynamic model, which takes the linear and nonlinear behaviours of the tyre into account using the pure and combined-slip assumptions separately. The developed methodology also incorporates various normal loads at each corner and provides a proper tyre–vehicle platform for control and estimation applications. Steady-state and transient LuGre models are also used in the model development and their responses are compared in different driving scenarios. Considering the fact that the vehicle dynamics is time-varying, the stability of the suggested time-varying model is investigated using an affine quadratic stability approach, and a novel approach to define the critical longitudinal speed is suggested and compared with that of conventional lateral stability methods. Simulations have been conducted and the results are used to validate the proposed method.  相似文献   

8.
It is quite challenging to estimate the braking performance of a vehicle because the brake system is comprised of many parts, including a booster, master cylinder, and caliper. Calculation of characteristics such as braking force through vehicle tests requires much time and money. Therefore, the development of a method to estimate the braking performance of a vehicle using qualitative methods is beneficial. In this study, a program that can analyze the braking capabilities of a vehicle such as pressure, efficiency, and pedal travel is presented. The increase in disc temperature during braking as well as the properties of various boosters can be calculated using the proposed program. Dynamic characteristics of a vehicle equipped with a Load Sensing Proportional Valve (LSPV) were computed more precisely by obtaining the change in valve pressure according to the displacement of a suspension system. Since all input and output files are composed in the Microsoft Excel format, both design data management and database construction can easily completed.  相似文献   

9.
The influence of the tyre–road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre–road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre–road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.  相似文献   

10.
Objective testing of vehicle handling in winter conditions has not been implemented yet because of its low repeatability and its low signal-to-noise ratio. Enabling this testing, by identifying robust manoeuvres and metrics, was the aim of this study. This has been achieved by using both experimental data, gathered with steering-robot tests on ice, and simulation models of different complexities. Simple bicycle models with brush and MF-tyre models were built, both optimally parameterised against the experimental data. The brush model presented a better balance in complexity performance. This model was also implemented in a Kalman filter to reduce measurement noise; however, a simpler low-pass filter showed almost similar results at lower cost. A more advanced full vehicle model was built in VI-CarRealTime, based on kinematics and compliance data, damper measurements, and real tyre measurements in winter conditions. This model offered better results and was therefore chosen to optimise the initial manoeuvres through test design and simulations. A sensitivity analysis (ANOVA) of the experimental data allowed one to classify the robustness of the metrics. Finally, to validate the results, the proposed and the initial manoeuvres were tested back to back in a new winter campaign.  相似文献   

11.
The steady-state handling properties of a rigid vehicle with a tandem rear axle configuration are developed. This work uses conventions resulting in a parsimonious characterisation of steady-state handling of such three-axle vehicles that is shown to be a simple extension of the well-known two-axle bicycle model. Specifically the concepts of understeer and wheelbase are developed for a three-axle vehicle, and shown to play the same role in characterising vehicle handling as they do in the well-known two-axle vehicle model. An equivalent wheelbase of a three-axle vehicle is expressed in terms of vehicle geometry and cornering stiffness of each axle. The model developed in this work is reconciled with previous models that make use of simplifying assumptions found in the literature.  相似文献   

12.
This paper presents a semi-active differential, magneto-rheological fluid limited slip differential, which allows us to bias the torque between the driving wheels. It is based on the magneto-rheological fluid employment, by which it is possible to change, in a controlled manner, the internal friction torque and, consequently, the torque bias ratio. This device is an adaptive one and allows us to obtain an asymmetric torque distribution in order to improve vehicle handling. The device modelling and the control algorithm, realised for this activity, are described. The illustrated results highlight the advantages that are attainable regarding directional behaviour, stability, and traction.  相似文献   

13.
介绍气制动大客车制动力以及制动力矩的计算方式,并通过实际气制动客车制动力矩的计算和数据对比.为今后在客车制动系统设计当中,提供有效理论依据.  相似文献   

14.
The aim of this study is to investigate the ability of an essentially nonlinear vibration absorber to mitigate the large accelerations transmitted to a passenger compartment of a vehicle which is subjected to shock-type transient loading at the chassis. For such problems, the induced vibration typically attains its maximum value shortly after the application of the loading; thus, it may be impossible to dissipate a major portion of the input energy prior to the occurrence of the peak response. Here, a class of absorbers possessing a form of discontinuous essential stiffness nonlinearity is employed to achieve the desired mitigation. In this paper, we apply a single vibro-impact (VI) absorber to the chassis and examine whether the resulting energy transfer mechanism is an effective way to reduce the peak value of the inertial force measured at the passenger compartment. The influence of the absorber parameters is first studied based on a practical impulsive force, and the optimal design of the absorber is then obtained. Next, an asymmetric clearance arrangement of the absorber is suggested to facilitate the mitigation. Finally, an impulsive acceleration excitation is applied to the system to examine the robustness and efficacy of the optimised absorber. Results of numerical simulations demonstrate that a properly designed VI absorber can significantly decrease the maximum inertial force at the passenger compartment, generated by external impulsive excitations.  相似文献   

15.
王建华  王云成  付铁军  张宝生 《汽车工程》2006,28(5):460-464,476
采用7自由度车辆动力学模型,对装用JA1020LSD型转矩式限滑差速器的后轮驱动汽车进行了操纵稳定性研究。通过仿真分析和道路试验研究表明:装用限滑差速器后增加了后轮驱动车辆的不足转向趋势,即改善了操纵稳定性,但转向力矩略有增加。  相似文献   

16.
The aim of this paper is to present a novel control method for a four-wheel steer and four-wheel drive (4WS4WD) vehicle. The novelty is in the integration of sliding mode control (SMC) and particle swarm optimization (PSO) that is proposed to solve the control problem caused by the nonlinear, highly coupled and over-actuated characteristics of the four-wheel steer and four-wheel drive (4WS4WD) vehicle. The validity of the control method is evaluated by two criterions, namely path following performance assessed by the vehicle's position errors with respect to the reference path, and motion quality reflected by the smoothness of vehicle's velocities and accelerations. In vehicle modelling, a kinematic model and a dynamic model considering all slip forces are proposed for the controller design. Simulation results are provided to demonstrate the applicability of the proposed methodology and its robustness.  相似文献   

17.
In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.  相似文献   

18.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   

19.
汽车隧道内气流及污染问题研究   总被引:7,自引:3,他引:7  
研究了汽车隧道内的空气流动及污染扩散问题。对隧道内各种通风竖井进行简化,建立相应的隧道内空气总的运动方程。在采用龙格-库塔法求出流动情况的基础上,求解污染扩散方程,计算隧道内的污染纵向分布,从而建立了一套隧道内的流动及污染分布的工程估算方法。计算结果表明该方法的有效性,得出了使用不当的通风竖井方案反而会抑制隧道内污染物扩散的结论。  相似文献   

20.
汽车空气弹簧的应用现状及发展趋势   总被引:1,自引:0,他引:1  
文章介绍了空气弹簧在我国的应用与发展现状,重点叙述了空气弹簧的结构原理和特点,须解决的关键技术及未来发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号