首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanical model of the coupler and draft gear was established to study the mechanism during an intercity train collision. The model includes four rigid bodies, one spherical joint, two nonlinear torsion spring units and two nonlinear hysteresis units. Simulation and test results show that the axial characteristics of the model are reasonable and the model can reasonably simulate the pitching movement of the coupler. The influence of the coupler and draft gear on the collision behaviour of the train is analysed considering a four-section intercity train. The results show that during the collision process, the amount of compression of the middle coupler is an important factor influencing the pitching deflection angle. The pitching motion posture of the coupler changes with the initial pitching deflection angle, but the initial pitching deflection angle has little effect on its yawing deflection angle. When the pitching angle of the middle coupler is elevated, as the elevation angle increases, the derailment risk of the ‘A’ end bogie of the previous vehicle increases, whereas the risk of derailment of the ‘B’ end bogie of the subsequent vehicle decreases. When the pitching angle of the middle coupler is depressed, the derailment trends for the front and rear bogies exhibit the opposite trend from that of the elevation angle. As the train collision speed increases, the pitching motion of the middle coupler is limited to forcing a yawing motion, causing the yawing deflection angle to increase sharply, which causes the wheel–rail lateral force to increase rapidly. From this, the derailment risk of the bogie increases, which further causes large displacement lateral buckling of the train. An anti-lateral buckling device can limit the yawing deflection angle of the middle coupler, preventing lateral buckling from large displacement and decreasing the risk of derailment.  相似文献   

2.
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train–truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.  相似文献   

3.
In this paper, the collision-induced derailment of freight trains was investigated. The collision between two identical freight trains occurring on a curved path rather than along a straight line was investigated. This is because from the point of view of safety against derailment this collision scenario is thought to be more critical than the scenarios defined in the European standard EN 15227. In this work, one of the trains is stationary and the other moving train collides at 36 km/h. Two kinds of container wagons were simulated. One is the two-axle freight wagon Kls 442. Another is the freight wagon Rmms 662 with two Y25 bogies. Simulation results demonstrate that in terms of safety against derailment the bogie wagon Rmms 662 was found to have better behaviour than the two-axle wagon Kls 442. In addition, this study points out that there are many contributory factors to the responses of freight wagons during a collision, such as curve radius, distance between bogie pivots and loading mass. The derailment phenomenon is less likely to occur, when freight trains collide on the curve with a larger radius. Besides that the characteristics of freight wagons with large axle loads, low centre of gravity of car body and appropriate static strength are favourable for the collided wagons in reducing the risk of derailment.  相似文献   

4.
The wheel flange climb derailment, which can be usually considered as a quasi-static process, is one of the main types of derailment, and often occurs on curved tracks due to large wheel lateral force and reduced vertical force. The general formula for the wheel critical derailment coefficient Q/P, the ratio of wheel lateral force to vertical force, is derived through analysing the forces exerted on the flange climb wheel. Based on the Coulomb's friction law and the creep force laws, the Friction Formula and Creep Formula for the evaluation of derailment are derived, respectively. The analysis shows that the derailment coefficients of Friction Formula and Creep Formula required for derailment are increased considerably for smaller and negative yaw angles, and tend to the value of Nadal's Formula at larger wheelset yaw angles. The Creep Formula is more reasonable for the assessment of derailment. The effect of some parameters on flange climb derailment, such as wheel/rail friction coefficient, yaw angle, flange contact angle, wheel vertical load and curve radius, are investigated. Finally, a simplified formula for wheel climb derailment based on the Creep Formula is proposed.  相似文献   

5.
The wheel flange climb derailment, which can be usually considered as a quasi-static process, is one of the main types of derailment, and often occurs on curved tracks due to large wheel lateral force and reduced vertical force. The general formula for the wheel critical derailment coefficient Q/P, the ratio of wheel lateral force to vertical force, is derived through analysing the forces exerted on the flange climb wheel. Based on the Coulomb's friction law and the creep force laws, the Friction Formula and Creep Formula for the evaluation of derailment are derived, respectively. The analysis shows that the derailment coefficients of Friction Formula and Creep Formula required for derailment are increased considerably for smaller and negative yaw angles, and tend to the value of Nadal's Formula at larger wheelset yaw angles. The Creep Formula is more reasonable for the assessment of derailment. The effect of some parameters on flange climb derailment, such as wheel/rail friction coefficient, yaw angle, flange contact angle, wheel vertical load and curve radius, are investigated. Finally, a simplified formula for wheel climb derailment based on the Creep Formula is proposed.  相似文献   

6.
To investigate the stability mechanism of a type of heavy-haul coupler with arc surface contact, the force states of coupler were analysed at different yaw angles according to the friction circle theory and the structural characteristics of this coupler were summarised. A multi-body dynamics model with four heavy-haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability was tested in order to investigate the effect of relevant parameters on the coupler stability. The results show that this coupler exhibits the self-stabilisation and less lateral force at a small yaw angle. The yaw angle of force line is less than the actual coupler yaw angle which reduces the lateral force and the critical instability. An increase in the friction coefficient of the arc contact surfaces can improve the stability of couplers. The friction coefficient needs to be increased with the increase in the maximum coupler longitudinal compressive force. The stability of couplers is significantly enhanced by increasing the secondary suspension stiffness and reducing the clearance of the lateral stopper of the locomotives. When the maximum coupler compressive force reaches 2500 kN, the required friction coefficient reduces from 0.6 to 0.35, which notably lowers the derailment risk caused by the coupler. The critical instability angle of the coupler mainly depends on the arc contact friction coefficient. When the friction coefficient is 0.3, the critical instability angle was 4–4.5°. The simulation results are consistent with the locomotive line tests. These studies establish meaningful improvements for the stability of couplers and match the heavy-haul locomotive with its suspension parameters.  相似文献   

7.
This study investigated the wheel-lift and roll-over derailment mechanisms caused by train collisions using a precise virtual testing model (VTM) of a Korean high-speed train. The VTM was a complex, nonlinear finite element model composed of the shell, beam, solid, spring, and surface contact elements for the car body, bogies, suspensions, and wheel–rail interfaces. The VTM was validated by checking the errors in the total energy and the dynamic responses of the spring elements. To achieve a quick, dynamic relaxation of the dead weight of the VTM before the collision analysis, the artificial damping method and the artificial force method were introduced and numerically evaluated. The surface-to-surface contact model from commercial software, Ls-Dyna, was applied to the VTM in order to simulate the derailment mechanisms caused by collision accidents. The numerical analyses of the VTM colliding with a large deformable obstacle or a rigid wall revealed for the first time that a mixed slip/roll-over-type derailment mechanism generally occurs. Furthermore, the simulation results were consistent with the results from a simplified theoretical derailment model of a wheel set.  相似文献   

8.
To investigate the stability and mechanical characteristics of a type of heavy haul coupler with restoring bumpstop, the geometry and force states of couplers were analysed at different yaw angles and the longitudinal forces. The structural characteristics of this coupler were summarised. To aid in the investigation, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and lateral forces were tested in order to investigate the effect of relevant parameters on the locomotive's wheelset lateral forces. The results show that only when the bumpstop force exceeds half of the coupler longitudinal compression force, can the follower be rotated and the yaw angle of the coupler increase. The bumpstop preload is the most important stabilising factor. The coupler lateral force is constant when the coupler longitudinal force is smaller than the critical values of 2000, 1400 and 1150 kN at coupler free angles of 7°, 8° and 9°, respectively, for operation on straight track. The coupler free angle and the locomotive's lateral clearance of the secondary stopper are important in decreasing the wheelset lateral forces of the locomotive. It is advised that a smaller locomotive's secondary lateral suspension stiffness, a free clearance of 35 mm and an elastic clearance of 15 mm from the secondary lateral stopper be selected. If the coupler's free angle is less than the self-stabilising angle which is 5.5° for operation on straight track, the coupler is stable no matter how great the longitudinal force is. The wheelset lateral forces are allowed at the coupler longitudinal force of 2500 kN when the free angle is 6°. These studies establish meaningful improvements for the stability of couplers and match the heavy haul locomotive with its suspension parameters.  相似文献   

9.
将有轨电车发展的研讨视为1项决策过程,按照基本属性、出行目的、出行模式等异质性特征,将出行群体划分为不同群组,开展基于不同异质性群组对发展有轨电车决策的偏好特性研究.通过融合行为偏好(RP)的意向偏好(SP)问卷调查,获取不同群组的基本属性及决策偏好特征数据.考虑有轨电车发展决策同时受环境要素、个体社会经济属性及出行需...  相似文献   

10.
When a locomotive coupler rotates at an angle, the lateral component of the coupler force has an adverse effect on the locomotive's safety, particularly in heavy haul trains. In this paper, a model of a head-mid configuration, a 20,000-t heavy haul train is developed to analyse the rotation behaviour of the locomotive's coupler system and its effect on the dynamic behaviour of such a train's middle locomotive when operating on tangent and curved tracks. The train model includes detailed coupler and draft gear with which to consider the hysteretic characteristics of the rubber draft gear model, the friction characteristics of the coupler knuckles, and the alignment-control characteristics of the coupler shoulder. The results indicate that the coupler's rotation behaviour differs between the tangent and curved tracks, significantly affecting the locomotive's running performance under the braking condition. A larger coupler rotation angle generates a larger lateral component, which increases the wheelset's lateral force and the derailment coefficient. Decreasing the maximum coupler free angle can improve the locomotive's operational performance and safety. Based on these results, the recommended maximum coupler free angle is 4°.  相似文献   

11.
Prevention of train from derailment is the most important issue for the railway system. Keeping derailed vehicle close to the track centreline is beneficial to minimise the severe consequences associated with derailments. In this paper, the post-derailment safety measures are studied based on low-speed derailment tests. Post-derailment devices can prevent deviation of the train from the rail by catching the rail, and they are mounted under the axle box. Considering the different structures of vehicles, both trailer and motor vehicles are equipped with the safety device and then separately used in low-speed derailment tests. In derailment tests, two kinds of track, namely the CRTS-I slab ballastless track and the CRTS-II bi-block sleeper ballastless track, are adopted to investigate the effect of the track types on the derailment. In addition, the derailment speed and the weight of the derailed vehicle are also taken into account in derailment tests. The test results indicate that the post-derailment movement of the vehicle includes running and bounce. Reducing the derailment speed and increasing the weight of the head of the train are helpful to reduce the possibility for derailments. For the CRTS-I slab ballastless track, the safety device can prevent trailer vehicles from deviating from the track centreline. The gearbox plays an important role in controlling the lateral displacement of motor vehicle after a derailment while the safety device contributes less to keep derailed motor vehicles on the track centreline. The lateral distance between the safety device and rails should be larger than 181.5?mm for protecting the fasteners system. And for the CRTS-II bi-block sleeper ballastless track, it helps to decrease the post-derailment distance due to the longitudinal impacts with sleepers. It can also restrict the lateral movement of derailed vehicle due to the high shoulders. The results suggest that, CRTS-II bi-block sleeper ballastless track should be widely used in derailment prone areas.  相似文献   

12.
Recent reports show that the secondary collision on the road gives much higher fatality rate than the other traffic accidents. Many studies have been carried out to prevent the secondary accidents and as a result automotive companies began to introduce brake-based secondary collision avoidance systems. To prevent the secondary accidents it is important to monitor and control the lateral deviation of the vehicle after the primary collision. An estimator for the vehicle’s lateral offset and drift angle based on the in-vehicle sensors and the camera was developed in this paper. By employing sensor fusion scheme and applying extended Kalman filter, the estimator has been designed so that it works even when the camera loses the image of the lanes due to sudden change of the vehicle’s heading angle. For validation of the estimator, simulation has been carried out on various collision scenarios. The simulation results indicated that the estimator of this paper could calculate the vehicle’s lateral deviation with robustness that may be required for application in the secondary collision avoidance systems.  相似文献   

13.
This paper aims to improve car body stability performance by optimising locomotive parameters when coupler jack-knifing occurs during braking. In order to prevent car body instability behaviour caused by coupler jack-knifing, a multi-locomotive simulation model and a series of field braking tests are developed to analyse the influence of the secondary suspension and the secondary lateral stopper on the car body stability performance during braking. According to simulation and test results, increasing secondary lateral stiffness contributes to limit car body yaw angle during braking. However, it seriously affects the dynamic performance of the locomotive. For the secondary lateral stopper, its lateral stiffness and free clearance have a significant influence on improving the car body stability capacity, and have less effect on the dynamic performance of the locomotive. An optimised measure was proposed and adopted on the test locomotive. For the optimised locomotive, the lateral stiffness of secondary lateral stopper is increased to 7875?kN/m, while its free clearance is decreased to 10?mm. The optimised locomotive has excellent dynamic and safety performance. Comparing with the original locomotive, the maximum car body yaw angle and coupler rotation angle of the optimised locomotive were reduced by 59.25% and 53.19%, respectively, according to the practical application. The maximum derailment coefficient was 0.32, and the maximum wheelset lateral force was 39.5?kN. Hence, reasonable parameters of secondary lateral stopper can improve the car body stability capacity and the running safety of the heavy haul locomotive.  相似文献   

14.
为了探明流冰撞击桥墩对高速车辆-轨道-桥梁耦合系统动力学行为的影响,采用精细化有限元模型模拟了流冰撞击桥墩的过程,计算获得了不同冰排特性下流冰撞击力时程曲线,基于列车-轨道-桥梁动力相互作用理论,以流冰荷载作为外激励,建立了高速车辆-轨道-桥梁-冰击动力学分析模型.以5跨32 m简支梁为例,通过研究不同冰击荷载作用下桥...  相似文献   

15.
李奎  王志强 《隧道建设》2017,37(2):150-159
统计分析了83例国内外铁路隧道运营期事故资料,研究了铁路隧道运营期间主要灾害类型、原因及防灾对策。研究结果表明:1)铁路隧道运营期间主要灾害类型有火灾、列车碰撞、脱轨及衬砌剥落;2)铁路隧道运营期防灾应以隧道火灾为重点,同时兼顾列车碰撞、脱轨和隧道衬砌混凝土剥落等灾害;3)隧道内旅客列车火灾的主要原因为列车车辆关键部位故障、人为因素、列车车辆缺陷致列车碰撞或脱轨;4)依据土建设施规模及隧道结构分布特点,长大铁路隧道(群)运营期防灾模式可选择定点停车疏散救援模式、全长或局部范围内随机停车疏散救援模式;5)铁路隧道防灾涉及基础设施、铁道车辆和运输调度,应建立铁路隧道运营期灾害防范体系及预警系统,防止事故发生。  相似文献   

16.
Collision avoidance at intersections involving a host vehicle turning left across the path of an oncoming vehicle (Left Turn Across Path/Opposite Direction) have been studied in the past, but mostly using simplified interventions and rarely considering the possibility of crossing the intersection ahead of a bullet vehicle. Such a scenario where the driver preference is to avoid a collision by crossing the intersection ahead of a bullet vehicle is considered in this work. The optimal vehicle motion for collision avoidance in this scenario is determined analytically using a particle model within an optimal control framework. The optimal manoeuvres are then verified through numerical optimisations using a two-track vehicle model, where it was seen that the wheel forces followed the analytical global force angle result independently of the other wheels. A Modified Hamiltonian Algorithm controller for collision avoidance that uses the analytical optimal control solution is then implemented and tested in CarMaker simulations using a validated Volvo XC90 vehicle model. Simulation results showed that collision risk can be significantly reduced in this scenario using the proposed controller, and that more benefit can be expected in scenarios that require larger speed changes.  相似文献   

17.
针对智能汽车在无信号交叉口对横穿行人的避撞问题,研究了主动转向避撞控制策略.基于多层模型预测控制方法,采用分层控制策略设计局部规划层控制器与全局跟踪层控制器,在此基础上根据交叉口处汽车与行人的轨迹特征计算人车碰撞剩余时间,改进传统人工势场法构造避撞函数,规划出既能规避交叉口内存在碰撞风险的行人又能使偏差最小的局部避撞路...  相似文献   

18.
现有的安全距离模型是基于纵向相对车速或减速度值建立的,没有考虑移动目标的横向运动特性。本文利用移动目标横穿马路的速度、相对位置,建立横向安全距离模型,并提出一种基于横向安全距离模型的主动避障算法。首先,根据横向移动目标横穿马路的速度、相对位置和自车的制动距离建立横向安全距离模型,设计主动避障算法。接着,为计及路面条件对制动效果的影响,引入当前行驶路面估算的附着系数峰值估算最大制动减速度,约束目标避障减速度,并调整制动强度,以适应不同路况的安全避障行驶。最后,以典型横向移动目标骑行者作为研究对象,通过PreScan/Simulink/CarSim联合仿真验证避障算法的有效性。结果表明:基于横向安全距离模型的主动避障算法能有效避免与骑行者碰撞,提高行车的主动安全性。  相似文献   

19.
Summary In this paper, the fundamental problems in the calculation of transverse vibration of train-bridge and train-track time-varying system (hereinafter referred to as the system) are expounded. That is, (1) Proper solution to transverse vibration of the system cannot be obtained by establishing separate transverse vibration equation groups for the car and the bridge (or track); (2) The exciting source of transverse vibration of the system has not been made definite; (3) It is difficult to carry out the random analysis of vibration of the time varying system as the theory of the random vibration analysis for the time varying system has not been established. Our thinking and methods to solve these problems are introduced. On the above-mentioned basis, the theory of random energy analysis for train derailment is presented. The main contents of this theory are as follows: method of random energy analysis of transverse vibration of the system; geometric criterion of derailment; mechanism of derailment caused by the combined track irregularity and energy increment criterion for derailment evaluation; calculation of the entire derailing process; method of improvement of track parameters for preventing straight line speed-raise freight trains from derailment and of the calculation of the safety coefficient against derailment. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurred accident. A train in another derailment test is judged to be not derailed and its maximum vibration responses are calculated. The field test results are well responded.  相似文献   

20.
在高度自动化车辆(Highly Automated Vehicle,HAV)中,由于不再需要驾驶人,乘客之间可以实现面对面的交流,这给车辆座椅的布置提供了更大的灵活性。为提高HAV的碰撞安全性,提出使用旋转座椅来改变人体朝向与碰撞方向相对位置的规避策略,其基本思路是在碰撞发生前通过主动改变座椅朝向来降低乘员损伤。首先,利用尸体试验数据对所建立的碰撞模型进行验证;然后,基于4种不同的座椅朝向,利用THUMSTM人体模型进行初始速度为56 km·h-1的正面碰撞模拟试验,以确定相对安全的座椅朝向位置;最后,预测座椅旋转过程本身以及旋转至某位置后发生碰撞的乘员损伤风险。在静态正面碰撞中,选择0°、90°、135°和180°四种不同的座椅朝向进行乘员损伤预测和比较,结果表明180°朝向时的乘员损伤风险最小。在此基础上,模拟了200 ms内将座椅旋转±45°和±90°,以及分别在0 ms和100 ms时间延迟后引入碰撞的试验过程。研究结果表明:200 ms能够将乘员旋转±45°和±90°而不引起额外的人体损伤,并且在无时间延迟时,旋转至背对碰撞方向的乘员损伤,比正面碰撞中0°、90°和135°座椅朝向的乘员损伤更低,证明了该损伤风险规避策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号