共查询到19条相似文献,搜索用时 0 毫秒
1.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1200-1215
City tram collisions are simulated using multi-body dynamics. The aim of this paper is to investigate the collision-induced derailment. Simulation results demonstrate that the corner obstacle collision scenario defined in EN 15227 is mainly focused on the energy absorption process. Due to the large impact angle (45°), it is unlikely for a city tram to comply with this scenario without derailment. In order to avoid derailment, the maximum impact angle between city tram and oblique obstacle should be reduced to 25°. Moreover, some influence factors are analysed, such as mass of loaded passengers, friction coefficient, impact angle, etc. Derailment phenomenon is shown to be significantly dependent on these parameters. Two measures are proposed to prevent the collided city tram from derailment. One is using secondary lateral dampers to absorb collision energy. Another is increasing the lateral stiffness of secondary springs as well as the lateral clearance, so that more collision energy can be stored in the suspension. With these measures, the safety against derailment can be improved. 相似文献
2.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):663-674
Override simulations of two train units in frontal collision have been carried out using multi-body dynamics. The aim of this paper is to investigate the possible factors influencing the overriding behaviour throughout frontal collisions. In addition to the initial vertical offset defined in the standard EN 15227, the pitching motion of vehicles has a great effect on the overriding phenomenon. It depends on several factors, such as collision mass, pitching frequency, height of the centre of mass above the rail level. In this paper, it has been shown that the overriding phenomenon is more sensitive to variations in pitching frequency and height of the centre of mass, compared with the factor of the collision mass. Moreover, it has been demonstrated from simulation results that a 200-kN vertical force is required for the combined anti-climber devices (100 kN for each side anti-climber) to constrain the vertical relative motion between crashed train units. 相似文献
3.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1339-1365
Freight wagons are usually equipped with the standard Union Internationale des Chemins de Fer pneumatic brake. On long trains, the propagation of the pneumatic signals along the pipe and different braking/loading conditions may produce delays and/or differences in the application of the braking effort along the train. This phenomenon may cause heavy longitudinal forces exchanged between wagons through buffers and draw gear. In particular, the workgroup n.6 (freight trains composition) of the Italcertifer committee has performed some preliminary studies concerning the application of LL braking operative conditions on freight wagons trains travelling on Italian lines. Partners have cooperated in this workgroup; however, in this paper, the attention is focused on methodologies and results concerning the contribution of University of Florence. The results of this activity, coordinated by RFI-CESIFER have been used to emanate the 20/07 rule of the RFI (‘Modifiche alla Prefazione Generale all'Orario di Servizio’) which modify the composition criterion rules of freight trains on the Italian Railways in order to introduce and discipline the application of the LL braking operative condition. 相似文献
4.
This study investigated the wheel-lift and roll-over derailment mechanisms caused by train collisions using a precise virtual testing model (VTM) of a Korean high-speed train. The VTM was a complex, nonlinear finite element model composed of the shell, beam, solid, spring, and surface contact elements for the car body, bogies, suspensions, and wheel–rail interfaces. The VTM was validated by checking the errors in the total energy and the dynamic responses of the spring elements. To achieve a quick, dynamic relaxation of the dead weight of the VTM before the collision analysis, the artificial damping method and the artificial force method were introduced and numerically evaluated. The surface-to-surface contact model from commercial software, Ls-Dyna, was applied to the VTM in order to simulate the derailment mechanisms caused by collision accidents. The numerical analyses of the VTM colliding with a large deformable obstacle or a rigid wall revealed for the first time that a mixed slip/roll-over-type derailment mechanism generally occurs. Furthermore, the simulation results were consistent with the results from a simplified theoretical derailment model of a wheel set. 相似文献
5.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1288-1303
An innovative structure for a heavy haul coupler with an arc surface contact and restoring bumpstop is proposed. This coupler has a small lateral force at a small yaw angle and a limitable yaw angle to ensure an allowable coupler lateral force under intense compressive force. The main structural characteristic of the combined contact coupler is a lateral movable follower with an appropriate friction coefficient of 0.06–0.08 and a slide block with a single freedom of longitudinal movement. In order to verify and simulate the performances, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and wheel set lateral forces were tested in order to investigate the effect of relevant parameters on the coupler performances. The combined contact coupler is suitable for heavy haul train for a good dynamic performance. 相似文献
6.
轻型载重汽车正面碰撞仿真及结构改进 总被引:1,自引:0,他引:1
针对轻型载重汽车前部吸能区短,发生正面碰撞时吸能效果差的特点,在建立整车有限元模型的基础上,应用ANSYS/LS—DYNA软件对其进行正面碰撞模拟仿真,分析其安全性能,找出结构设计不足之处。在不改变主要结构的原则下,通过改进保险杠缓冲吸能柱的结构形式,有效地改善了汽车保险杠缓冲吸能区的吸能能力,为提高轻型载重汽车碰撞安全性能的设计提供了参考依据。 相似文献
7.
Liang Ling Qinghua Guan David P. Thambiratnam 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(1):1-22
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train–truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported. 相似文献
8.
Ruiming Zou Shihui Luo 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(11):1747-1767
In order to simulate the runtime behaviour of coupler and buffer systems accurately, the dynamic model was improved by adopting the polygonal contact model. And the reliability of the friction phenomenon in flat-pin coupler’s tail and the connecting constraint between coupler heads were verified. Then the detailed model which fully considered the dynamic characteristics of middle locomotive and its adjacent wagons was incorporated into the simplified longitudinal dynamic model of combined heavy-haul train. The dynamic response of coupler and its influence on the running safety of locomotive under flat straight line emergency braking condition and long steep grade cycle braking condition were simulated respectively. According to the simulation results, the following suggestions were proposed: flat-pin coupler is more suitable for heavy-haul locomotive, but the inspection work on the friction surface of coupler tail needs to be strengthened; and the vertical anti-off stopping device should be added to avoid the occurrence of decoupling accidents. 相似文献
9.
R. Kovalev V. Yazykov A. Shamdani R. Bowey C. Wakeling 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(6):707-722
A heavy haul train and car dumper model was created to analyse train longitudinal dynamics during dumping. Influence of such factors as performance curve of draft gears, total free slack in couplers, operating mode of train positioner and braking of last two cars of train on the in-train forces was considered. 相似文献
10.
Liang Ling Qing Zhang Xinbiao Xiao Zefeng Wen Xuesong Jin 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(4):485-505
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train–track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train–track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative. 相似文献
11.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1271-1286
ABSTRACTThis paper presents an analysis of loaded freight wagon dynamics in curve alignments. We investigate the effects of the combined centre of gravity (CCOG) on the running safety of freight wagons and examine proper position of the CCOG. A simple wagon-rail model is implemented using the multibody dynamics software ADAMS/Rail. The simulation model is operated on curve tracks with various radii and velocities and the curving performances are evaluated. The results indicate that the CCOG can be located within a flexible and accurate range. The longitudinal offset is good for the curving performance and the permissible lateral offset should be assessed based on the curve radius and cant deficiency. 相似文献
12.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):675-703
Friction dampers of mechanical systems are frequently exposed to medium-frequency (M-F) dither generated in the surrounding environment. A dithered system of technical importance is the railway freight wagon with friction dampers in the primary suspension developing two-dimensional friction, where dither is generated by the rolling contact of wheel and rail. This paper presents some results of the investigation of the influence of dither on dry friction damping. This influence has been studied experimentally and theoretically, and the parameters of dither influencing dry friction damping have been indicated. An experimental set-up has been designed that allows investigating friction damping in the presence of dither. The experiments have shown that friction damping in the presence of the M-F dither behaves like viscous damping. This means that dither smoothes dry friction as far as damping is concerned. To investigate this phenomenon theoretically, a rheological model of dry friction has been proposed that is applicable to one- and two-dimensional friction. In the latter case, the model takes into account friction anisotropy. According to performed numerical simulations of freight wagon motion, with dither supplied to the model through measured vertical accelerations of axle boxes, smoothing dry friction by dither strongly influences ride dynamics of the wagon with friction dampers in the primary suspension. Smoothing dry friction by dither should be accounted for in numerical simulations of motion of vehicles with friction dampers in the primary suspension by employing a proper model of the two-dimensional friction and application of realistic dither generated by rolling contact. 相似文献
13.
运用MATLAB软件结合多刚体系统动理学和数值计算的方法给出了麦弗逊独立悬架导向机构运动特性参数的计算方法,并对导向机构结构参数进行了优化设计。结果表明该算法可行有效;优化后,悬架系统的运动学特性得到了改善。 相似文献
14.
15.
基于列车脱轨能量随机分析理论,分析天兴洲主跨80 m连续梁桥上高速列车的走行安全性。提出桥梁抗脱轨安全系数计算式,计算该桥的抗脱轨安全系数。在列车不会脱轨的条件下,分析桥上列车走行舒适性。分析结果表明:列车以300 km/h以下车速通过该桥时不会脱轨,桥梁抗脱轨安全系数很大;列车走行舒适性指标均为合格以上。研究成果为桥梁设计提供了理论依据。 相似文献
16.
17.
Jorge Ambr sio 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(6):385-411
The main goal of crashworthiness is to ensure that vehicles are safer for occupants, cargo and other road or rail users. The crash analysis of vehicles involves structural impact and occupant biomechanics. The traditional approaches to crashworthiness not only do not take into account the full vehicle dynamics, but also uncouple the structural impact and the occupant biomechanics in the crash study. The most common strategy is to obtain an acceleration pulse from a vehicle structural impact analysis or experimental test, very often without taking into account the effect of suspensions in its dynamics, and afterwards feed this pulse into a rigid occupant compartment that contains models of passengers. Multibody dynamics is the most common methodology to build and analyse vehicle models for occupant biomechanics, vehicle dynamics and, with ever increasing popularity, structural crash analysis. In this work, the aspects of multibody modelling relevant to road and rail vehicles and to occupant biomechanical modelling are revised. Afterwards, it is shown how multibody models of vehicles and occupants are used in crash analysis. The more traditional aspects of vehicle dynamics are then introduced in the vehicle models in order to appraise their importance in the treatment of certain types of impact scenarios for which the crash outcome is sensitive to the relative orientation and alignment between vehicles. Through applications to the crashworthiness of road and of rail vehicles, selected problems are discussed and the need for coupled models of vehicle structures, suspension subsystems and occupants is emphasized. 相似文献
18.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1877-1904
In this paper, a new hydraulically interconnected suspension (HIS) system is proposed for the implementation of a resistance control for the pitch and bounce modes of tri-axle heavy trucks. A lumped-mass half-truck model is established using the free-body diagram method. The equations of motion of a mechanical and hydraulic coupled system are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The transfer matrix method (TMM) is used to evaluate the impedance matrix of the hydraulic subsystem consisting of models of fluid pipes, damper valves, accumulators, and three-way junctions. The TMM is further applied to find the quantitative relationships between the hydraulic strut forces and boundary flow of the mechanical–fluid interactive subsystem. The modal analysis method is employed to perform the vibration analysis between the trucks with the conventional suspension and the proposed HIS. Comparison analysis focuses on free vibration with identified eigenvalues and eigenvectors, isolation vibration capacity, and force vibration in terms of the power spectrum density responses. The obtained results show the effectiveness of the proposed HIS system in reducing the pitch motion of sprung mass and simultaneously maintaining the ride comfort. The pitch stiffness is increased while the bounce stiffness is slightly softened. The peak values of sprung mass and wheel hop motions are greatly reduced, and the vibration decay rate of sprung mass is also significantly increased. 相似文献
19.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):251-279
A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analysed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia. 相似文献