首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Electric Vehicles (EVs) motors develop high torque at low speeds, resulting in a high rate of acceleration with the added advantage of being fitted with smaller gearboxes. However, a rapid rise of torque in EVs fitted with central drive powertrains can create undesired torsional oscillations, which are influenced by wheel slip and flexibility in the halfshaft. These torsional oscillations in the halfshaft lead to longitudinal oscillations in the vehicle, thus creating problems with regard to comfort and drivability. The significance of using wheel slip in addition to halfshaft torsion for design of anti-jerk controllers for EVs has already been highlighted in our previous research. In this research, we have designed a look-ahead model predictive controller (LA-MPC) that calculates the required motor torque demand to meet the dual objectives of increased traction and anti-jerk control. The designed LA-MPC will improve drivability and energy consumption in connected EVs. The real-time capability of the LA-MPC has been demonstrated through hardware-in-the-loop experiments. The performance of the LA-MPC has been compared to other controllers presented in the literature. A validated high-fidelity longitudinal-dynamics model of the Rav4EV, which is the test vehicle of our research has been used to evaluate the controller.  相似文献   

2.
SUMMARY

Recent research on autonomous highway vehicles has begun to focus on lateral control strategies. The initial work has focused on vehicle control during low-g maneuvers at constant vehicle speed, typical of lane merging and normal highway driving. In this paper, and its companion paper, to follow, the lateral control of vehicles during high-g emergency maneuvers is addressed. Models of the vehicle dynamics are developed, showing the accuracy of the different models under low and high-g conditions. Specifically, body roll, tire and drive-train dynamics, tire force saturation, and tire side force lag are shown to be important effects to include in models for emergency maneuvers. Current controllers, designed for low-g maneuvers only, neglect these effects. The follow on paper demonstrates the performance of lateral controllers during high-g lateral emergency maneuvers using these vehicle models.  相似文献   

3.
SUMMARY

This paper investigates two different longitudinal control policies for automatically controlled vehicles. One is based on maintaining a constant spacing between the vehicles while the other is based upon maintaining a constant headway (or time) between successive vehicles. To avoid collisions in the platoon, controllers have to be designed to ensure string stability, i.e the spacing errors should not get amplified as they propagate upstream from vehicle to vehicle. A measure of string stability is introduced and a systematic method of designing constant spacing controllers which guarantee string stability is presented. The constant headway policy does not require inter-vehicle communication to assure string stablity. Also, since inter-vehicle communication is not required it can be used in systems with mixed automated-nonautomated vehicles, e.g for AICC (Autonomous Intelligent Cruise Control). It is shown in this paper that for all the autonomous headway control laws, the desired control torques are inversely proportional to the headway time.  相似文献   

4.
ABSTRACT

In this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity.  相似文献   

5.
6.
SUMMARY

The stability and performance of a vision-based vehicle lateral control system are analyzed. Effects of look-ahead distance, vision delay, and vehicle speed on the performance of vision feedback control system are examined by using frequency domain and time domain methods. A measurement model of the vision system is derived from the point of view of multiple sensors. The quantization error of the vision system is analyzed and the way of extracting essential information for control is studied. Based on this analysis, some guidelines for the design of vision-based controllers are proposed. A design example is further illustrated for a vision system with a substantial time delay.  相似文献   

7.
SUMMARY

Due to increased traffic congestion and travel times, research in Advanced Vehicle Control Systems (AVCS) has focused on automated lateral and headway control. Automated vehicles are seen as a way to increase freeway capacity and vehicle speeds while reducing accidents due to human error. Recent research in automated lateral control has focused on vehicle control during low-g maneuvers. To increase safety, automated lateral controllers will need to recognize and react to emergency situations.

This paper investigates the effects of vehicle and tire model order on the response of automated vehicles to an emergency step lane change using a controller based on linear vehicle and tire models. From these studies it is concluded that control strategies based solely on linear vehicle and tire models are inadequate for emergency vehicle maneuvers.

A strategy is then proposed to automatically control vehicles through emergency maneuvers. Here the response of a nonlinear vehicle model is used with a linear state model to optimize controller gains for nonlinear maneuvers. An emergency step lane change is used as a preliminary test of the method.  相似文献   

8.
In this paper, decoupling control with H performance for four-wheel steering (4WS) vehicles under varying longitudinal velocity is studied. A novel control scheme for a nonlinear model of three states, respectively, the longitudinal and lateral velocities, and yaw rate, is proposed to address this issue. The scheme is composed of two varying-parameter controllers designing problems for both longitudinal and lateral systems with coupling performance. Varying parameters of both these controllers depend only on longitudinal velocity. Controlled by these controllers, the longitudinal system is decoupled with lateral velocity and yaw rate, and the lateral system is input–output decoupling with H performance. In addition, feedback signals are the longitudinal velocity and yaw rate, hence observations or measurements of lateral velocity are not necessary. Simulations show that vehicles controlled by our scheme are input–output diagonal decoupling and execute very well while longitudinal velocity varies in a large range, coupling appears between longitudinal and lateral systems, and external disturbances do exist. In summary, this control scheme can improve handling characteristics, safety and comfort proved from theory to practice in this paper.  相似文献   

9.
This paper investigates optimal roll control of an experimental articulated vehicle. The test vehicle and the mathematical model used to design the control strategies are presented. The vehicle model is validated against experimental data from the test vehicle in passive configuration. The initial controller design, performed by Sampson (Sampson, D.J.M. and Cebon, D., 2003a, Achievable roll stability of heavy road vehicles. Proc. Instn. Mech. Engrs, Part D, J. Automobile Engineering, 217(4), 269–287), is reviewed and adapted for the experimental vehicle. The effect of not controlling all the axles on the vehicle is investigated and a variable vehicle speed controller is designed by interpolating between constant speed controllers. Substantial reduction in normalized load transfer is achieved for a range of manoeuvres, both in steady-state and transient conditions.  相似文献   

10.
ABSTRACT

This paper describes a method to analyse and evaluate different trajectory planning methods and controller types for usage in automated vehicles. Its application is shown by using a novel trajectory planning approach considering comfort aspects (based on Rapidly Exploring Random Tree (RRT)), two different controllers to follow the planned path (cascade controller and flatness based controller) and a simulation method to obtain resulting lateral vehicle accelerations. The method is used to plan and drive a trajectory through a roundabout. It can be seen that the lateral accelerations of the controller-driven vehicle are in the range of the values used for planning. However, the results of both controllers show differences in lateral deviation and in smoothness of lateral accelerations. The simulation results are then compared to real-world test drives in the same roundabout. The measured lateral accelerations are in the same range as well but show a smoother progression than the two controller models.  相似文献   

11.
SUMMARY

The computer modelling of vehicle ride and handling has been widely reported, but often only one or other of these functions is considered. This is especially true in the design of active suspension controllers, where the effects that improvements in the performance of one aspect have on the other are often not presented. This paper initially describes a combined ride and handling model for a large executive saloon fitted with a slow-active suspension. Separately derived ride and roll control strategies are combined and the effects on both ride and handling considered for straight running and various handling man?uvres on rough roads. The results are compared to the original passively suspended vehicle and the effect of running each strategy separately.  相似文献   

12.
SUMMARY

Optimal design of an active suspension system for road vehicles can be solved using LQR techniques. Such a problem is equivalent, in the frequency domain, to determine the state feedback gain matrix that minimizes the H2 norm of a suitable transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable state feedback law whose gains are function of the system parameters. This law, and thus the characteristic elements of the passive suspension, can be determined as an approximation of the H2 optimal solution. This methodology allows one to choose the best controller from a constrained subset (i.e., all possible passive suspensions of a particular form) of all possible controllers.  相似文献   

13.
ABSTRACT

A robust trajectory tracking controller is designed for autonomous vehicles based on a hierarchical architecture to make the autonomous vehicle track a given reference trajectory. The controller consists of two sub controllers: kinematic controller and dynamic controller. Based on the kinematics of tracking reference trajectory, a desired yaw rate is calculated by kinematic controller to make the lateral deviation global asymptotic stable. Then, steering wheel angle is calculated by a vehicle dynamic controller to make the vehicle yaw rate converge to the desired value and make the vehicle dynamic stable. Conditional integration method is used in the sub controllers. This method guarantees global asymptotic stability of tracking reference values and considers the uncertainty of parameters and constraints of desired yaw rate and actuators. Then based on small-gain theorem, the condition of the finite-gain L stability is given to the hierarchical controller to ensure the interconnected sub systems stable and prevent the amplification of system disturbance. Finally, the effectiveness and robustness of the controller are validated by real vehicle experiments.  相似文献   

14.
This paper presents an approach to design the H /GH 2 static-output feedback controller for vehicle suspensions by using linear matrix inequalities (LMIs) and genetic algorithms (GAs). Three main performance requirements for an advanced vehicle suspension are considered in this paper. Among these requirements, the ride-comfort performance is optimized by minimizing the H norm of the transfer function from the road disturbance to the sprung mass acceleration, while the road-holding performance and the suspension deflection limitation are guaranteed by constraining the generalized H 2 (GH 2) norms of the transfer functions from the road disturbance to the dynamic tyre load and the suspension deflection to be less than their hard limits, respectively. At the same time, the controller saturation problem is considered by constraining its peak response output to be less than a given limit using the GH 2 norm as well. A four-degree-of-freedom half-car model with active suspension system is applied in this paper. Several kinds of H /GH 2 static-output feedback controllers, which use the available sprung mass velocities or the suspension deflections as feedback signals, are obtained by using the GAs to search for the possible control gain matrices and then resolving the LMIs together with the minimization optimization problem. These designed H /GH 2 static-output feedback controllers are validated by numerical simulations on both the bump and the random road responses which show that the designed H /GH 2 static-output feedback controllers can achieve similar or even better active suspension performances compared with the state-feedback control case in spite of their simplicities.  相似文献   

15.
SUMMARY

This paper describes new control methods for the active suspension. For improving ride comfort further, preview control rule is proposed. For improving stability further, roll stiffness distribution control rule is examined by the test vehicle. Simulations and vehicle driving tests are conducted to confirm the effect of these new control methods. The results of simulations and vehicle driving tests show in our research phase that preview control can achieve a substantial improvement in ride comfort and application of roll stiffness distribution control provides a large improvement in stability  相似文献   

16.
This paper studies multi-objective control of a full-vehicle suspension excited by random road disturbances. The control problem is first formulated as a mixed ?2/? synthesis problem and an output-feedback solution is obtained by using linear-matrix-inequalities. Next, the multi-objective control problem is re-formulated as a non-convex and non-smooth optimisation problem with controller order restricted to be less than the vehicle model order. For a range of orders, controllers are synthesised by using the HIFOO toolbox. The efficacy of the presented procedures are demonstrated by several design examples.  相似文献   

17.
In this paper, we present a hierarchical distributed coordination strategy for connected and automated vehicles (CAVs) that are travelling through multiple unsignalized intersections. The control strategy focuses on the improvement of vehicle fuel efficiency and system mobility. In presence of wireless communication among the involved CAVs and the intersection controllers, our coordination strategy focuses on leading the CAVs travel through a road network without conventional traffic light control and ensuring collision avoidance at the intersection areas. We propose a three-layered coordination strategy in this paper. First, we evaluate the road desired average velocity considering both upstream and downstream traffic to speed up the traffic density balance. Second, the intersection controllers optimally assign reference velocity to each vehicle based on the minimization of velocity deviation from its current velocity and collision avoidance at the intersections. Finally, fast model predictive control (F-MPC) is applied for each vehicle to track their reference velocity in a computationally efficient manner. Two simulation scenarios with different difficulty levels have been implemented on a two-interconnected intersection network. Simulation results indicate the feasibility and scalability of the proposed method, as well as vehicle fuel efficiency and system mobility improvement.  相似文献   

18.
SUMMARY

The architecture of the PATH vehicle lateral control system is presented in this paper. The two main modules are an intelligent reference/sensing system, and an Frequency-Shaped-Linear-Quadratic/preview control algorithm. The whole lateral control system was formerly evaluated on a two-door test vehicle. It was transplanted to a four-door vehicle which is considerably different from the older two-door test vehicle in dynamic characteristics. The objective of this study is to investigate the reusability of our control system.  相似文献   

19.
ABSTRACT

In this paper, we describe how vehicle systems and the vehicle motion control are affected by automated driving on public roads. We describe the redundancy needed for a road vehicle to meet certain safety goals. The concept of system safety as well as system solutions to fault tolerant actuation of steering and braking and the associated fault tolerant power supply is described. Notably restriction of the operational domain in case of reduced capability of the driving automation system is discussed. Further we consider path tracking, state estimation of vehicle motion control required for automated driving as well as an example of a minimum risk manoeuver and redundant steering by means of differential braking. The steering by differential braking could offer heterogeneous or dissimilar redundancy that complements the redundancy of described fault tolerant steering systems for driving automation equipped vehicles. Finally, the important topic of verification of driving automation systems is addressed.  相似文献   

20.
SUMMARY

The improvements of ride comfort and vehicle maneuverability in the vehicle design can be achieved by using an active suspension. However, the problems in such a control are the complex control logic because of the control laws incompatible with the improvements of ride comfort and maneuverability, and the cost increase because of various sensors to be attached. Therefore, we examined the control abilities of ride comfort and maneuverability on a unique control law using frequency shaped LQ, and controlled the characteristic of the contact between tire and road without a road displacement sensor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号