首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state handling properties of a rigid vehicle with a tandem rear axle configuration are developed. This work uses conventions resulting in a parsimonious characterisation of steady-state handling of such three-axle vehicles that is shown to be a simple extension of the well-known two-axle bicycle model. Specifically the concepts of understeer and wheelbase are developed for a three-axle vehicle, and shown to play the same role in characterising vehicle handling as they do in the well-known two-axle vehicle model. An equivalent wheelbase of a three-axle vehicle is expressed in terms of vehicle geometry and cornering stiffness of each axle. The model developed in this work is reconciled with previous models that make use of simplifying assumptions found in the literature.  相似文献   

2.
This paper devotes analytical effort in developing the 2M equivalent approach to analyse both the effect of vehicle body roll and n-axle handling on vehicle dynamics. The 1M equivalent vehicle 2DOF equation including an equivalent roll effect was derived from the conventional two-axle 3DOF vehicle model. And the 1M equivalent dynamics concepts were calculated to evaluate the steady-state steering, frequency characteristics, and root locus of the two-axle vehicle with only the effect of body roll. This 1M equivalent approach is extended to a three-axle 3DOF model to derive similar 1M equivalent mathematical identities including an equivalent roll effect. The 1M equivalent wheelbases and stability factor with the effect of the third axle or body roll, and 2M equivalent wheelbase and stability factor including both the effect of body roll and the third-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the three-axle vehicle. By using the recursive method, the generalised 1M equivalent wheelbase and stability factor with the effect of n-axle handling and 2M equivalent generalised wheelbase and stability factor including both the effect of body roll and n-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the n-axle vehicle. The 2M equivalent approach and developed generalised mathematical handling concepts were validated to be useful and could serve as an important tool for estimating both the effect of vehicle body roll and n-axle handling on multi-axle vehicle dynamics.  相似文献   

3.
In this paper, equivalent modelling methods of a multi-axle vehicle are presented and compared. Firstly, for the sake of comparison, a single-track model of a three-axle and a two-axle vehicle is developed, and then existing equivalent modelling derivations are presented and discussed. Next, the proposed model-based dynamic equivalence of force/moment at the centre of gravity (CG) is introduced and optimised. It represents the approximately equivalent steady-state and transient response of the yaw rate and side slip angle, which allows different cornering stiffness on the central and rear axle. Finally, to demonstrate how the proposed method is advantageous to the other equivalent models available in the literature, different simulation cases are compared in the dimension of time-domain, eigenvalues characteristics and frequency-domain. Furthermore, the proposed method is extended to any multi-axle vehicle configurations and a general expression is formulated.  相似文献   

4.
The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heavy vehicle integrating either unconnected or coupled suspension, three dimensionless measures of suspension properties are defined and analysed—namely the pitch margin (PM), pitch stiffness ratio (PSR), and coupled pitch stiffness ratio (CPSR)—for different unconnected suspension tunings and load conditions. Dynamic responses of the vehicle with three different load conditions and five different tunings of the unconnected suspension are obtained under excitations arising from three different random road roughness conditions and a wide range of driving speeds, and braking manoeuvres. The responses are evaluated in terms of performance measures related to vertical and pitch ride, dynamic tyre load, suspension travel, and pitch-attitude control characteristics of the vehicle. Fundamental relationships between the vehicle responses and the proposed suspension measures (PM, PSR, and CPSR) are established, based on which some basic suspension tuning rules for heavy vehicles with unconnected suspensions are also proposed.  相似文献   

5.
In the first part of this study, the potential performance benefits of fluidically coupled passive suspensions were demonstrated through analyses of suspension properties, design flexibility and feasibility. In this second part of the study, the dynamic responses of a vehicle equipped with different configurations of fluidically coupled hydro-pneumatic suspension systems are investigated for more comprehensive assessments of the coupled suspension concepts. A generalised 14 degree-of-freedom nonlinear vehicle model is developed and validated to evaluate vehicle ride and handling dynamic responses and suspension anti-roll and anti-pitch characteristics under various road excitations and steering/braking manoeuvres. The dynamic responses of the vehicle model with the coupled suspension are compared with those of the unconnected suspensions to demonstrate the performance potential of the fluidic couplings. The dynamic responses together with the suspension properties suggest that the full-vehicle-coupled hydro-pneumatic suspension could offer considerable potential in realising enhanced ride and handling performance, as well as improved anti-roll and anti-pitch properties in a very flexible and energy-saving manner.  相似文献   

6.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

7.
本文中提出一种新型具备转矩定向分配功能差速器的集中式电驱动桥系统。该集中驱动系统可以在不改变总驱动转矩的条件下,类似分布式驱动方式实现驱动转矩在左右轮间的任意分配,从而产生改变车辆横摆动力学的直接横摆力偶矩。首先,分析了转矩定向分配差速器结构特点及其工作原理;其次,利用键合图理论建立了其动力学模型,并仿真分析了其动态响应特性;然后,设计了转矩响应控制系统以改善该差速器的动态性能;最后,嵌入整车模型进行了联合仿真。结果表明,装备该差速器的车辆可任意分配左右轮驱动转矩,并有效改善车辆操控特性。  相似文献   

8.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   

9.
This paper outlines various analytical approaches of varying complexities to model the wheel in the ride dynamic formulation of off-road tracked vehicles. In addition to a proposed model, four analytical models available in the literature are compared to study their effectiveness in modeling the wheel/track-terrain interaction for ride dynamic evaluation of typical high mobility tracked vehicles. The ride dynamic model used in this study describes the bounce-pitch plane motion of an armoured personnel carrier (Ml 13 APC) traversing over an arbitrary rigid terrain profile at constant speed. The ride dynamic response of the tracked vehicle is evaluated with different wheel models, and compared against field-measured ride data. The relative performance of different wheel models are assessed based on the accuracy of response prediction and associated computational time. The proposed wheel model is found to perform very well in comparison, and is equally applicable for the case of wheeled vehicles.  相似文献   

10.
There are many situations where physical testing of a vehicle or vehicle controller is necessary, yet use of a full-size vehicle is not practical. Some situations include implementation testing of novel actuation strategies, analysing the behaviour of chassis feedback control under system faults, or near-unstable situations such as limit handling under driver-assist feedback control. Historically, many have advocated the use of scale vehicles as surrogates for larger vehicles. This article presents analysis and experimental testing that examines the fidelity of using scaled vehicles for vehicle chassis dynamics and control studies. In support of this effort, this work introduces an experimental system called the Pennsylvania State University Rolling Roadway Simulator (the PURRS). In the PURRS, a custom-built scale-sized vehicle is freely driven on a moving roadway surface. While others have used scale-vehicle rolling roadway simulators in the past, this work is the first to attempt to directly match the planar dynamic performance of the scale-sized vehicle to a specific full-sized vehicle by careful design of the scale vehicle. This article explains details of this effort including vehicle dynamic modelling, detailed measurement of model parameters, conditions for dynamic similitude, validation of the resulting experimental vehicle in the time, frequency, and dimensionless domains. The results of the dynamic comparisons between scale- and full-sized vehicles clearly illustrate operational regimes where agreement is quite good, and other regimes where agreement is quite poor. Both are useful to understand the applicability of scale-vehicle results to full-size vehicle analysis.  相似文献   

11.
基于奇异谱分析的动态称重系统算法研究   总被引:1,自引:1,他引:0  
潘若禹  李磊 《公路交通科技》2010,27(12):128-133
针对目前动态称重系统称重误差较大的现状,设计了基于奇异谱分析的动态称重系统。在汽车综合试验场,根据设计的动态称重系统及所选用的压电石英称重传感器的特点,采用两轴车辆及多轴车辆在S形通过、高速行驶刹车通过、不同车速通过的三种情况下采集称重数据。利用车辆的轴重与采集的信号所包围的面积关系计算得到车重,并将奇异谱分析(SSA)算法应用于动态称重系统的数据处理中。试验结果表明:SSA算法与传统的小波分析算法相比能够明显降低称重误差,可广泛推广应用于动态称重系统中。  相似文献   

12.
In this work, a literature survey on the validation of vehicle dynamics simulation models is presented. Estimating the dynamic responses of existing or proposed vehicles has a wide array of applications in the development of vehicle technologies, e.g. active suspensions, controller design, driver assistance systems, etc. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. This report presents different views on the definition of validation, and its usage in vehicle dynamics simulation models.  相似文献   

13.
This paper proposes an approach for the validation of railway vehicle models based on on-track measurements. The validation of simulation models has gained importance with the introduction of new applications of multi-body simulation in railway vehicle dynamics as the assessment of track geometry defects, the investigation of derailments and the analysis of gauging. These applications are not only interested in qualitative predictions of the vehicle behaviour but also in precise quantitative results of the safety and comfort relevant vehicle responses. The validation process aims at guaranteeing that the simulation model represents the dynamic behaviour of the real vehicle with a sufficient good precision. A misfit function is defined which quantifies the distance between the simulated and the measured vehicle response allowing to evaluate different models at different running conditions. The obtained modelling errors are compared to the measurement uncertainty estimated for one vehicle using repeatability analysis.  相似文献   

14.
为了提出适用于中国车-桥耦合振动分析的车辆动力分析模型,首先基于中国桥梁规范中的设计车辆荷载,结合大量调查统计数据和等效静力分析方法,初步拟定车辆动力分析模型的几何尺寸、质量、刚度、阻尼等参数取值,并与国内外广泛采用的几种车辆模型的参数取值进行对比。接着选取4座钢筋混凝土简支梁桥并建立其三维有限元模型,基于车-桥耦合振动数值模拟分析车辆模型的刚度、阻尼等参数对桥梁上动力冲击系数的影响,并对比几个不同车辆模型对动力冲击系数的影响。最后,选择中国湖南省境内一座实桥和几辆不同轴数的重车开展实桥试验,将实测动力冲击系数与所提车辆模型数值模拟获得的冲击系数进行对比。结果表明:动力冲击系数随车辆总质量的增大而减小,随车辆整体刚度的增大而增大,但随车辆整体阻尼的增大呈先减小后增大的趋势;单个车轴的刚度和阻尼对动力冲击系数的影响不明显;车辆总质量是导致不同车辆模型作用下动力冲击系数差异的主要因素;数值模拟结果与实测结果吻合良好,验证了所提车辆模型及参数取值的合理性;该车辆模型可用于中国的设计车辆荷载作用下桥梁的动力响应分析和相关研究,也可用于估算重量相当的不同类型车辆对桥梁的动力冲击效应。  相似文献   

15.
An Experimental Investigation of Preview Control   总被引:3,自引:0,他引:3  
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car 'Hardware-in-the-loop' (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

16.
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car ‘Hardware-in-the-loop’ (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

17.
For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

18.
重型汽车荷载作用下简支梁桥的动力反应分析   总被引:5,自引:1,他引:5  
基于结构动力学理论,视桥梁与车辆为一个相互作用的整体系统,建立了桥梁在移动车辆荷载作用下振动的计算模式。在分析中,汽车采用2轴模型,桥梁结构模拟为梁单元,统一列出车桥系统的动力方程,编制了计算程序。对实际预应力混凝土简支箱梁桥在重型汽车作用下的动力冲击效应进行了计算,并与轻型汽车荷载作用下产生的动力冲击系数进行了比较。  相似文献   

19.
Reliability of the railway vehicle suspension system is of critical importance to the safety of the vehicle. On-line health condition monitoring for the suspension system of rail vehicles offers a number of benefits such as preventing further deterioration of vehicle performance, enhancing vehicle safety, increasing operational reliability and availability, and reducing maintenance costs. It is desirable to timely detect the fault and monitor the performance degradation of vehicle suspension systems. In this paper, a comparative study on fault detection methods of urban rail vehicle suspension systems is considered. A novel sensor configuration is proposed where the underlying vehicle system is equipped with only acceleration sensors in the four corners of the carbody, the leading and trailing bogie, respectively. A mathematical model is developed for the considered vehicle suspension system. Both model-based and data-driven approaches are studied for the suspension fault detection problem. The robust observer, the Kalman filter combined with the generalised likelihood ratio test method, the dynamical principle components analysis and the canonical variate analysis approaches are applied to the fault detection problem. The simulation is carried out by means of the professional multi-body simulation tool, SIMPACK. In addition, the advantages and disadvantages of these methods are compared. The simulation results show that the data-driven methods outperform the model-based methods.  相似文献   

20.
The general form of the equations of motion of a symmetric railway vehicle with two unsymmetric two-axle bogies is derived. The equations include a generic elastic stiffness matrix that describes the nature and configuration of the structural connections between the various components of the vehicle. This matrix satisfies the condition for perfect steering (without generating creep forces) on uniform curves and the necessary condition for dynamic stability derived in previous work. The paper shows the application of these basic conditions to a class of generic unsymmetric bogies. The analysis has as its objective the derivation of the simplest rather than the most general configuration that meets the conditions imposed. The results are related to past and current practice. It is shown that perfect steering, with stability at low speeds, can be achieved by means of passive suspension elements not employing linkages, and that it is possible to simplify existing steering arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号