首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The directional dynamic analyses of partly-filled tank vehicles have been limited to quasi-static fluid motion due to computational complexities associated with dynamic fluid slosh analyses. The dynamic fluid slosh causes significantly higher magnitudes of slosh forces and moments in the transient state that cannot be characterized through quasi-static approach, which provides reasonably good estimates of the mean responses. In this study, a three-dimensional nonlinear model of a partly-filled cylindrical tank with and without baffles is developed to investigate the significance of resulting destabilizing forces and moments caused by the transient fluid slosh, and the effects of baffles. The baffles and the end caps are modeled with curved shapes. The analyses are performed under varying magnitudes of steady lateral, longitudinal and combinations of lateral and longitudinal accelerations of the tank, and two different fill volumes using the FLUENT software. The results of the study are presented in terms of mean and peak slosh forces and moments, and variations in the mass moments of inertia of the fluid cargo within a clean bore and a baffled tank, for two different fill volumes and different magnitudes of acceleration excitations. The ratios of transient responses to the mean responses, termed as amplification factors, are further described to emphasize the significance of dynamic fluid slosh on the forces and moments induced on the vehicle. The results in general suggest that the mean responses attained from dynamic fluid slosh analyses correlate well with those attained from the quasi-static analyses for a clean bore tank. The amplification ratios of the resulting forces and moments could approach as high as 2. The results clearly show that the presence of baffles helps to suppress the peak as well as mean slosh forces and moments significantly.  相似文献   

2.
SUMMARY

A comprehensive directional dynamics model of a tractor-tank trailer is developed by integrating a non-linear dynamic fluid slosh model to the three-dimensional vehicle dynamics model. The nonlinear fluid slosh equations are solved in an Eulerian mesh to determine dynamic fluid slosh loads caused by the dynamic motion of the vehicle. The dynamic fluid slosh forces and moments are coupled with the vehicle dynamics model to study the directional response characteristics of tank vehicles. The directional response characteristics of partially filled tank vehicles employing dynamic slosh model are compared to those employing quasi-dynamic vehicle model, for steady as well as transient directional maneuvers. Simulation results reveal that during a steady steer maneuver, the dynamic fluid slosh loads introduce oscillatory directional response about a steady-state value calculated from the quasi-dynamic vehicle model. The directional response characteristics obtained using the quasi-dynamic and dynamic fluid slosh models during transient steer inputs show good correlation. Based on this study, it can be concluded that the quasi-dynamic model can predict the directional response characteristics of tank vehicles quite close to that evaluated using the comprehensive fluid slosh model.  相似文献   

3.
The directional response and roll stability characteristics of a partly filled tractor-semitrailer vehicle, equipped with various cross-section tanks, are investigated as functions of fill volume and steer inputs. The tank-vehicle combination is analytically modeled upon integrating a quasi-static roll plane model of a partly filled tank of generic cross-section with a three-dimensional directional dynamic model of a five-axle tractor-semitrailer vehicle, assuming constant forward speed. The vehicle model is analyzed for different cross-sections of partly filled tanks, including circular, modified-oval and two optimal cross-sections. The directional response characteristics of the vehicle are evaluated to study the influence of partial-fill condition, steering maneuver, and vehicle speed on the roll dynamic performance of the tank cross-section and the vehicle. A comparison of the response characteristics, in terms of variations in cargo c.g. shift and roll mass moment of inertia, roll angle, lateral acceleration and yaw rate of the trailer sprung mass, revealed that the optimal tank geometry yields considerably less variations in the cargo c.g. coordinates and can thus significantly enhance the directional response and roll stability characteristics of partly-filled tank vehicles.  相似文献   

4.
The directional response and roll stability characteristics of a partly filled tractor-semitrailer vehicle, equipped with various cross-section tanks, are investigated as functions of fill volume and steer inputs. The tank-vehicle combination is analytically modeled upon integrating a quasi-static roll plane model of a partly filled tank of generic cross-section with a three-dimensional directional dynamic model of a five-axle tractor-semitrailer vehicle, assuming constant forward speed. The vehicle model is analyzed for different cross-sections of partly filled tanks, including circular, modified-oval and two optimal cross-sections. The directional response characteristics of the vehicle are evaluated to study the influence of partial-fill condition, steering maneuver, and vehicle speed on the roll dynamic performance of the tank cross-section and the vehicle. A comparison of the response characteristics, in terms of variations in cargo c.g. shift and roll mass moment of inertia, roll angle, lateral acceleration and yaw rate of the trailer sprung mass, revealed that the optimal tank geometry yields considerably less variations in the cargo c.g. coordinates and can thus significantly enhance the directional response and roll stability characteristics of partly-filled tank vehicles.  相似文献   

5.
Control and handling of heavy commercial vehicles carrying liquid cargo are influenced by liquid movement within the partially filled tank. During steering and braking maneuvering tasks, the truck may exhibit unstable behavior at lateral acceleration levels of 0.3 g to 0.4 g [m/s2]. The fluid slosh forces and dynamic load transfers in the lateral and longitudinal directions and parametric uncertainties caused by moving liquid cargo affect the overall dynamics of the vehicle. To solve a physical problem about the minimal excitation of the slosh dynamics associated with the longitudinal and lateral excitation of the vehicle, dynamic sliding surface design combined with recursive backstepping algorithm is introduced. Compensator dynamics are introduced in the sliding mode through a class of switching surfaces which has the interpretation of linear operators such that the resulting closed-loop system retains the insensitivity to uncertainties in the sliding mode while minimizing the excitation of flexible modes and unmodeled dynamics. The frequency shaped backstepping sliding mode algorithm, proposed by Acarman and Özgüner [Frequency shaping compensation for backstepping sliding mode control. Paper presented at the 15th IFAC World Congress, Barcelona, Spain, 2002], is designed to stabilize and to attenuate the sloshing effects of moving cargo by properly choosing the crossover frequencies of the dynamic compensators in accordance with the fundamental frequencies of the slosh dynamics.  相似文献   

6.
This paper deals with the study of running dynamic effects for a partially filled railway tank vehicle. A computational fluid dynamics model in 2D is established and used to define the motion of the sloshing fluid and the forces generated on the tank, for curving conditions typical of railway freight transport. From these results, an equivalent mechanical model is identified which is able to correctly reproduce the forces generated on the tank. Finally, a mathematical model is defined for the entire freight car, including the bogies with primary suspensions, the tank and a discrete number of equivalent models positioned at different places along the longitudinal axis of the tank. This model is used to simulate the dynamics of the tank for a variety of curve geometries, train speeds and fill levels. By these simulations, derailment and rollover risks are evaluated and the most critical conditions for running safety are defined. Results show that sloshing can increase significantly the risk of tank rollover whereas its influence on the risk of derailment is minor.  相似文献   

7.
The influence of the lateral load shift on the dynamic response characteristics of an articulated tank vehicle is investigated assuming inviscid fluid flow conditions. A quasi-dynamic roll plane model of a partially filled cleanbore tank of circular cross-section is developed and integrated to a three-dimensional model of the articulated vehicle, assuming constant forward speed. The destabilizing effects of liquid load shift are studied by comparing the directional dynamics of the partially filled tank vehicle to that of an equivalent rigid cargo vehicle subject to steady steer input. Dynamic response characteristics demonstrate that the stability of a partially filled tank vehicle is adversely affected by the Liquid load shift The distribution of cornering forces caused by the liquid load shift yield considerable deviation of the path followed by the liquid tank vehicle. The influence of the vehicle speed on the dynamics of the liquid tank vehicle is also investigated for variations in the fill levels and fluid density.  相似文献   

8.
SUMMARY

The influence of the lateral load shift on the dynamic response characteristics of an articulated tank vehicle is investigated assuming inviscid fluid flow conditions. A quasi-dynamic roll plane model of a partially filled cleanbore tank of circular cross-section is developed and integrated to a three-dimensional model of the articulated vehicle, assuming constant forward speed. The destabilizing effects of liquid load shift are studied by comparing the directional dynamics of the partially filled tank vehicle to that of an equivalent rigid cargo vehicle subject to steady steer input. Dynamic response characteristics demonstrate that the stability of a partially filled tank vehicle is adversely affected by the Liquid load shift The distribution of cornering forces caused by the liquid load shift yield considerable deviation of the path followed by the liquid tank vehicle. The influence of the vehicle speed on the dynamics of the liquid tank vehicle is also investigated for variations in the fill levels and fluid density.  相似文献   

9.
An extension to the LuGre dynamic friction model from longitudinal to longitudinal/lateral motion is developed in this paper. Application of this model to a tyre yields a pair of partial differential equations that model the tyre-road contact forces and aligning moment. A comparison of the steady-state behaviour of the dynamic model with existing static tyre friction models is presented. This comparison allows one to determine realistic values of the parameters for the new dynamic model. Via the introduction of a set of mean states we reduce the partial differential equations to a lumped model governed by a set of three ordinary differential equations. Such a lumped form describes the aggregate effect of the friction forces and moments and it can be useful for control design and online estimation. A method to incorporate wheel rim rotation is also proposed. The proposed model is evaluated by comparing both its steady-state as well as its dynamic characteristics via numerical simulations. The results of the simulations corroborate steady-state and dynamic/transient tyre characteristics found in the literature.  相似文献   

10.
本论文针对如何降低塑料燃油箱噪声,主要在油箱内增加防浪板入手,降低油箱内燃油晃动的能量,以致降低产生的噪声,提高了汽车驾乘人员的舒适度。  相似文献   

11.
The unrestrained free surface of a liquid has an alarming propensity to undergo large excursions for even very small motions of the container. This fact may endanger the stability, as well as the riding and maneuvering quality of the vehicle considerably. It is particularly true for fuel- or cargo tanks of automotive vehicles, railroad tank cars, for fuel tanks of large ships and tankers, for which violent sea conditions at times result in fairly large amplitudes of pitching, heaving and rolling, as well as for airplanes and spacevehicles flying through atmospheric disturbances. The response of liquids contained in cargo- or fuel tanks is therefore of quite some concern, especially in those cases where the sloshing liquid masses occupy a large amount of the total mass of the vehicle.

For this reason the theory of liquid motion with a free surface is presented for containers of various geometries. Forces and moments of the liquid exerted upon the vehicle are presented and a simple mechanical model for the representation of the liquid motion is derived. Methods for the reduction of the destabilizing effect of the liquid motion, such as baffles, cross walls and surface coverings are presented and shall exhibit their effectiveness. In addition the interaction of the liquid motion with the elastic structure of the container, as well as the interaction with a controlling system of the vehicle shall be demonstrated. Stability boundaries, design criteria and dynamic responses to disturbances shall be presented for a particular case.  相似文献   

12.
This article presents a model for solving solid–fluid interactions in vehicles carrying liquids. A tractor–semitrailer model is developed by incorporating suspension systems and tire dynamics. Owing to the solid–fluid interaction, equations of motion for the vehicle system are coupled. To simplify the complicated solution procedure, the coupled equations are solved separately using two different codes. Each code is analyzed separately; but as the parameters of the two codes depend on each other, the codes must be connected at the end of each time step. To determine the dynamic behavior of the system, different braking moments are applied. As the braking moments increase, braking time decreases. However, it turns out that increasing the braking moment to more than a certain level produces no significant results. It is also shown that vehicles carrying fluids need a greater amount of braking moments in comparison to vehicles carrying solids during braking. In addition, as the level of the fluid inside the tanker increases, from one-third to two-third of the tanker’s volume, the sloshing forces applied to the tanker’s walls increase. It was also concluded that the strategy used in this article to solve for the solid–fluid interaction by incorporating vehicle dynamic effects represents an effective method for determining the dynamic behavior of vehicles carrying fluids in other critical maneuvers.  相似文献   

13.
为方便液罐半挂汽车列车(Tractor Semi-trailer Tank Vehicle,TSTTV)罐-车整体的优化设计匹配,综合提高整车的侧倾稳定性、侧向动力学稳定性及操纵特性,基于Lagrange方法和椭圆规摆等效机械液体晃动模型建立TSTTV的整车侧向耦合动力学模型,其典型特征是实现罐内液体侧向晃动与车辆横摆运动、侧向运动、悬挂质量的侧倾运动及非线性侧向轮胎力的集成一体化建模,贯通液体晃动动力学与车辆侧向动力学稳定性之间的联系。通过开环正弦停滞转向输入操作响应对所建立的模型进行分析评价,考察车辆横摆角速度、质心侧偏角、侧倾角、侧向载荷转移率及液体晃动角等状态量在2种充液比(FL=40%,80%)及2种罐体椭圆率(Δ=1.0,1.3)下的响应。研究结果表明:所建立的TSTTV模型可以实现液体侧向晃动作用下的车辆侧向耦合动力学仿真分析,能够反映充液比、罐体截面椭圆率等运输条件和罐体几何参数对整车侧倾稳定性、侧向动力学稳定性及操纵特性的影响;基于该模型可以针对液体介质、充液比及道路环境等运输条件因素的影响,研究以提高整车侧向动力学稳定性为目标的TSTTV灌-车整体的优化设计匹配问题,这对提升液罐车的设计性能、提高行驶的安全性和运输效率具有重要意义。  相似文献   

14.
SUMMARY

The unrestrained free surface of a liquid has an alarming propensity to undergo large excursions for even very small motions of the container. This fact may endanger the stability, as well as the riding and maneuvering quality of the vehicle considerably. It is particularly true for fuel- or cargo tanks of automotive vehicles, railroad tank cars, for fuel tanks of large ships and tankers, for which violent sea conditions at times result in fairly large amplitudes of pitching, heaving and rolling, as well as for airplanes and spacevehicles flying through atmospheric disturbances. The response of liquids contained in cargo- or fuel tanks is therefore of quite some concern, especially in those cases where the sloshing liquid masses occupy a large amount of the total mass of the vehicle.

For this reason the theory of liquid motion with a free surface is presented for containers of various geometries. Forces and moments of the liquid exerted upon the vehicle are presented and a simple mechanical model for the representation of the liquid motion is derived. Methods for the reduction of the destabilizing effect of the liquid motion, such as baffles, cross walls and surface coverings are presented and shall exhibit their effectiveness. In addition the interaction of the liquid motion with the elastic structure of the container, as well as the interaction with a controlling system of the vehicle shall be demonstrated. Stability boundaries, design criteria and dynamic responses to disturbances shall be presented for a particular case.  相似文献   

15.
This article presents a model for solving solid-fluid interactions in vehicles carrying liquids. A tractor-semitrailer model is developed by incorporating suspension systems and tire dynamics. Owing to the solid-fluid interaction, equations of motion for the vehicle system are coupled. To simplify the complicated solution procedure, the coupled equations are solved separately using two different codes. Each code is analyzed separately; but as the parameters of the two codes depend on each other, the codes must be connected at the end of each time step. To determine the dynamic behavior of the system, different braking moments are applied. As the braking moments increase, braking time decreases. However, it turns out that increasing the braking moment to more than a certain level produces no significant results. It is also shown that vehicles carrying fluids need a greater amount of braking moments in comparison to vehicles carrying solids during braking. In addition, as the level of the fluid inside the tanker increases, from one-third to two-third of the tanker's volume, the sloshing forces applied to the tanker's walls increase. It was also concluded that the strategy used in this article to solve for the solid-fluid interaction by incorporating vehicle dynamic effects represents an effective method for determining the dynamic behavior of vehicles carrying fluids in other critical maneuvers.  相似文献   

16.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

17.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

18.
采用无机陶瓷膜超滤工艺对东风商用车公司车身厂涂装生产线脱脂工序预脱脂槽中的脱脂清洗液进行了小试和中试试验研究。试验结果表明,采用无机陶瓷膜对脱脂液进行处理回用,可以长时间控制脱脂液中油污浓度保持在250mg/L以下的水平,回用的透过液对工件脱脂效果与回用前没有明显差别。采用无机陶瓷膜分离技术对脱脂液进行处理回用是较好的一种清洁生产工艺。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号