首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The design of the integrated active front steering and active differential control for handling improvement of road vehicles is undertaken. The controller design algorithm is based on the solution of a set of linear matrix inequalities that guarantee robustness against a number of vehicle parameters such as speed, cornering and braking stiffnesses. Vehicle plane dynamics are first expressed in the generic linear parameter-varying form, where the above-stated parameters are treated as interval uncertainties. Then, static-state feedback controllers ensuring robust performance against changing road conditions are designed. In a first series of simulations, the performance of the integrated controller is evaluated for a fishhook manoeuvre for different values of road adhesion coefficient. Then, the controller is tested for an emergency braking manoeuvre executed on a split-μ road. In all cases, it is shown that static-state feedback controllers designed by the proposed method can achieve remarkable road handling performance compared with uncontrolled vehicles.  相似文献   

2.
ABSTRACT

In this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity.  相似文献   

3.
建立了某四轮汽车9自由度车辆模型和轮胎动力模型,并提出了一种基于侧向力利用系数的差动制动、主动转向切换控制策略。模拟了汽车以车速24.5m/s行驶时的一个紧急避让情况,研究了无控制模式、差动制动控制模式、联合控制模式下的车辆横摆角速度、质心侧偏角、质心侧向位移的变化。结果表明,所提出的差动制动联合主动转向技术的控制策略可以满足变路面下车辆稳定性控制要求。  相似文献   

4.
雷雨成  赵清亮 《汽车工程》1996,18(6):325-329,337
本文描述了17自由度汽车全工况操纵与制动过程动力学模型的建模,仿真与验证。该模型考虑了侧风,有无防抱系统,高速,变车速,双移线转变制动等各种极端工况,仿真结果与美国密执安大学的仿真结果十分吻合,证实了该算法与模型具有很好的精度。  相似文献   

5.
6.
A comparison between two different approaches to vehicle stability control is carried out, employing a robust non-parametric technique in the controller design. In particular, an enhanced internal model control strategy, together with a feedforward action and a suitably generated reference map, is employed for the control of a vehicle equipped either with a rear wheel steering (RWS) system or with a rear active differential (RAD) device. The uncertainty arising from the wide range of operating conditions is described by an additive model set employed in the controller design. Extensive steady state and transient tests simulated with an accurate 14 degrees of freedom nonlinear model of the considered vehicle show that both systems are able to improve handling and safety in normal driving conditions. RAD devices can make the vehicle reach higher lateral acceleration values but they achieve only slight stability improvements against oversteer. On the other hand, 4WS systems can greatly improve both vehicle safety and manoeuvrability in all driving situations, making this device an interesting and powerful stability system.  相似文献   

7.
以驾驶员预瞄点处的横向偏移最小为目标,以道路曲率输入的车辆运动模型为基础,分析了车辆进行主动转向所需要的道路环境信息,并研究了利用电子地图及车辆定位传感器得到这些信息的方法。利用设计的转向控制器进行了恒定道路曲率及基于电子地图数据的实际道路信息输入下的主动转向仿真。仿真结果表明,利用电子地图提供的信息能够在投入较低成本的条件下进行主动转向,使车辆在道路曲率变化的情况下沿预定道路行驶并有着较小的侧向加速度;从而提高车辆在弯曲道路行驶的安全性、舒适性。  相似文献   

8.
This article presents two design strategies for an active rear wheel steering control system. The first method is a standard design procedure based on the well-known single track model. The aim of the feedback loop is to track a reference yaw rate in order to improve the handling behaviour. Unfortunately, a reasonable specification of the reference yaw rate proves to be a nontrivial task. A second approach avoids this drawback. The structure of the controller is regarded as a virtual mass-spring-damper system with adjustable parameters. Due to the high abstraction level of this method, the controller parameters can be tuned intuitively. Experiments with a prototype vehicle illustrate the effectiveness of the two proposed methodologies.  相似文献   

9.
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.  相似文献   

10.
不同转向模式的多轴转向车辆性能分析   总被引:1,自引:0,他引:1  
为解决重型车辆转向时的低速机动性和高速稳定性的问题,提出了多轴动态转向技术,并以三轴车辆为研究对象进行分析。首先建立多轴转向的二自由度车辆模型以及运动微分方程,为提高车辆的稳定性,以零质心侧偏角为目标,推导各轴间的转角比例系数及有关的状态空间矩阵、传递函数,使用MATLAB软件对不同转向模式下的操纵稳定性进行了稳态响应、瞬态响应以及频域响应的仿真。通过分析比较,说明采用多轴动态转向技术,车辆在转向时具有低速机动性高、高速稳定性好的特点。  相似文献   

11.
EPS与主动悬架系统自适应模糊集成控制的仿真与试验研究   总被引:1,自引:0,他引:1  
在建立的汽车整车主动悬架和EPS动力学模型(包含转向运动、俯仰运动和侧倾运动等模型)的基础上,运用自适应模糊控制方法,利用车身姿态的变化动态地调节主动悬架控制器和EPS控制器的输出,实现了对EPS和主动悬架系统的集成控制。为了验证控制系统的可行性和有效性,分别进行了仿真和实车道路试验。结果表明,集成控制显著提高了汽车的行驶平顺性和操纵稳定性,整车综合性能明显优于传统的悬架和转向系统。  相似文献   

12.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

13.
The paper deals with the bifurcation analysis of a rather simple model describing an automobile negotiating a curve. The mechanical model has two degrees of freedom and the related equations of motion contain the nonlinear tyre characteristics. Bifurcation analysis is adopted as the proper procedure for analysing steady-state cornering. Two independent parameters referring to running conditions, namely steering angle and speed, are varied. Ten different combinations of front and rear tyre characteristics (featuring understeer or oversteer automobiles) are considered for the bifurcation analysis. Many different dynamical behaviours of the model are obtained by slightly varying the parameters describing the tyre characteristics. Both simple and extremely complex bifurcations may occur. Homoclinic bifurcations, stable and unstable limit cycles (of considerable amplitude) are found, giving a sound and ultimate interpretation to some actual (rare but very dangerous) dynamic behaviours of automobiles, as reported by professional drivers. The presented results are cross-validated by exploiting handling diagram theory. The knowledge of the derived set of bifurcations is dramatically important to fully understand the actual vehicle yaw motions occurring while running on an even surface. Such a knowledge is a pre-requisite for robustly designing the chassis and for enhancing the active safety of vehicles.  相似文献   

14.
This paper introduces the active third-axle system as an innovative vehicle dynamic control method. This method can be applicable for different kinds of three-axle vehicles such as buses, trucks, or even three-axle passenger cars. In this system, an actuator on the middle axle actively applies an independent force on the suspension to improve the handling characteristics, and hence, its technology is similar to slow-active suspension systems. This system can change the inherent vehicle dynamic characteristics, such as under/over steering behaviour, in the linear handling region, as well as vehicle stability in the nonlinear, limit handling region. In this paper, our main focus is to show the potential capabilities of this method in enhancing vehicle dynamic performance. For this purpose, as the first step, the proposed method in both linear and nonlinear vehicle handling regions is studied mathematically. Next, a comprehensive, nonlinear, 10 degrees of freedom vehicle model with a fuzzy control strategy is used to evaluate the effectiveness of this system. The dynamic behaviour of a vehicle, when either uncontrolled or equipped with the active third axle is then compared. Simulation results show that this active system can be considered as an innovative method for vehicle dynamic control.  相似文献   

15.
This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs’ manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it ‘drivers’ the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.  相似文献   

16.
A methodology is presented in this work that employs the active inverted wings to enhance the road holding by increasing the downward force on the tyres. In the proposed active system, the angles of attack of the vehicle's wings are adjusted by using a real-time controller to increase the road holding and hence improve the vehicle handling. The handling of the race car and safety of the driver are two important concerns in the design of race cars. The handling of a vehicle depends on the dynamic capabilities of the vehicle and also the pneumatic tyres’ limitations. The vehicle side-slip angle, as a measure of the vehicle dynamic safety, should be narrowed into an acceptable range. This paper demonstrates that active inverted wings can provide noteworthy dynamic capabilities and enhance the safety features of race cars. Detailed analytical study and formulations of the race car nonlinear model with the airfoils are presented. Computer simulations are carried out to evaluate the performance of the proposed active aerodynamic system.  相似文献   

17.
Current vehicle dynamic control systems from simple yaw control to high-end active steering support systems are designed to primarily actuate on the vehicle itself, rather than stimulate the driver to adapt his/her inputs for better vehicle control. The driver though dictates the vehicle’s motion, and centralizing him/her in the control loop is hypothesized to promote safety and driving pleasure. Exploring the above statement, the goal of this study is to develop and evaluate a haptic steering support when driving near the vehicle’s handling limits (Haptic Support Near the Limits; HSNL). The support aims to promote the driver’s perception of the vehicle’s behaviour and handling capacity (the vehicle’s internal model) by providing haptic (torque) cues on the steering wheel. The HSNL has been evaluated in (a) driving simulator tests and (b) tests with a vehicle (Opel Astra G/B) equipped with a variable steering feedback torque system. Drivers attempted to achieve maximum velocity while trying to retain control in a circular skid-pad. In the simulator (a) 25 subjects drove a vehicle model parameterised as the Astra on a dry skid-pad while in (b) 17 subjects drove the real Astra on a wet skid-pad. Both the driving simulator and the real vehicle tests led to the conclusion that the HSNL assisted subjects to drive closer to the designated path while achieving effectively the same speed. With the HSNL the drivers operated the tires in smaller slip angles and hence avoided saturation of the front wheels’ lateral forces and excessive understeer. Finally, the HSNL reduced their mental and physical demand.  相似文献   

18.
Synthesis of a Model-Based Tire Slip Controller   总被引:3,自引:0,他引:3  
The Anti-lock Braking System is an important component of the steering system in a modern car. In the latest generation of brake-by-wire systems, the performance requirements on the ABS are much higher. The controllers have to be able to maintain a specified tire slip for each wheel during braking. The authors propose a design model and based on that a gain-scheduled controller that regulates the tire-slip. Simulation and test results are presented.  相似文献   

19.
The Anti-lock Braking System is an important component of the steering system in a modern car. In the latest generation of brake-by-wire systems, the performance requirements on the ABS are much higher. The controllers have to be able to maintain a specified tire slip for each wheel during braking. The authors propose a design model and based on that a gain-scheduled controller that regulates the tire-slip. Simulation and test results are presented.  相似文献   

20.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号