首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

Electronic throttle control is an important part of every advanced vehicle control system. In this paper we design an adaptive control scheme for electronic throttle that achieves good tracking of arbitrary constant speed commands in the presence of unknown disturbances. The design is based on a simplified linear vehicle model which is derived from a validated nonlinear one. The designed control scheme is simulated using the validated full order nonlinear vehicle model and tested on an actual vehicle. The simulation and vehicle test results are included in this paper to show the performance of the controller. Due to the learning capability of the adaptive control scheme, changes in the vehicle dynamics do not affect the performance of the controller in any significant manner.  相似文献   

2.
SUMMARY

Numerical design of vehicles having optimal straight line stability on undulating road surfaces requires an accurate vehicle model based on knowledge of the relevant phenomena. Therefore, vehicle behavior on undulating straight roads has been analyzed and modeled. Measurements on a flat road surface have shown that the dedicated vehicle model yields accurate simulation results of the steering response to medium steering wheel angle inputs. In addition, the model has been validated by measuring two vehicle responses during normal driving on an undulating straight road: viz. the responses to the small steering wheel angle input and to the input by the global inclination of the road surface.  相似文献   

3.
SUMMARY

In pantographs used for current collection on high speed electric trains it is desirable to minimise the fluctuations in the contact force between the collector head and the catenary. A simple two-mass linear model is employed for the pantograph and the design of the proposed control system is based on the input admittance at low frequencies. Frequency shaping is incorporated in the performance index, and a simple dynamic controller is employed to achieve optimality in an equivalent transformed system, while minimising the number of feedback quantities to be measured. A significant reduction in the average contact force appears possible.  相似文献   

4.
5.
Abstract

Different driver models and driver/vehicle/road closed-loop directional control systems are reviewed and compared. Evaluation methods of vehicle handling quality based on closed-loop system dynamics, stability of the closed-loop system, and optimization of vehicle design are discussed.  相似文献   

6.
SUMMARY

The stability and performance of a vision-based vehicle lateral control system are analyzed. Effects of look-ahead distance, vision delay, and vehicle speed on the performance of vision feedback control system are examined by using frequency domain and time domain methods. A measurement model of the vision system is derived from the point of view of multiple sensors. The quantization error of the vision system is analyzed and the way of extracting essential information for control is studied. Based on this analysis, some guidelines for the design of vision-based controllers are proposed. A design example is further illustrated for a vision system with a substantial time delay.  相似文献   

7.
This paper investigates optimal roll control of an experimental articulated vehicle. The test vehicle and the mathematical model used to design the control strategies are presented. The vehicle model is validated against experimental data from the test vehicle in passive configuration. The initial controller design, performed by Sampson (Sampson, D.J.M. and Cebon, D., 2003a, Achievable roll stability of heavy road vehicles. Proc. Instn. Mech. Engrs, Part D, J. Automobile Engineering, 217(4), 269–287), is reviewed and adapted for the experimental vehicle. The effect of not controlling all the axles on the vehicle is investigated and a variable vehicle speed controller is designed by interpolating between constant speed controllers. Substantial reduction in normalized load transfer is achieved for a range of manoeuvres, both in steady-state and transient conditions.  相似文献   

8.
SUMMARY

The lateral dynamics of an uncontrolled motorcycle, running on a straight, level road surface, is investigated in this paper. The structural compliances in the front and the rear frames of the motorcycle are taken into account by introducing additional degrees of freedom in the analysis. The kinematics of the tires is represented by linear differential equations which are based on the taut-string model of pneumatic tires. The linear differential equations of motion are solved to yield the eigensolutions of the system. Numerical results, obtained for parameters corresponding to a Honda CB750 motorcycle, are presented and discussed.  相似文献   

9.
SUMMARY

This paper describes a multiport approach to computer-aided modeling of vehicle dynamics. The modeling approach produces models that are suitable for the interactive design and evaluation of complex control strategies. The vehicle model which can be used for ride and handling analysis, is built from modular components. The components are programmed using the syntax of the computer aided control system design (CACSD) program EASYS. Seven modeling components are used to create a three-dimensional vehicle dvnamics model. The model is flexible enoug-h to simulate any suspension design with revolute joints.

Each component of the model consists of a FORTRAN subroutine and a main calling module called a macro. To simplify the process of model building, the modeling components in the car model are designed to represent physical elements, such as the spring, damper, link or tire. To create a model, the components, which are represented by blocks, are interconnected through points, located on the blocks, called pons. These ports have been designed to simulate the location of the connection points between the physical elements, as observed in real systems. The construction of multibody models within a CACSD program offers the flexibility of simultaneous interactive simulation of the three-dimensional dvnamics and evaluation of the desien of the controls.

Although modeling of multibody systems using FORTRAN components has been pioneered by Chace, Haug and Orlandea; and bond graph modeling of multibody systems has been investigated by Bos, this approach is novel because:-

The model is included in the control system design program (EASYS). This arrangement allows the designer to exploit the advanced control design tools available in the program. Furthermore, this approach significantly reduces the computation time required for running the model after parameters modification.

The model is built from components that are interconnected by ports which represent the actual physical location of the connection points between the elements. The multiport approach simplifies the model building process for multibody systems. This simplification is achieved by reducing the model of a multibody system to a block diagram form.  相似文献   

10.
SUMMARY

A numerical procedure for finding the optimum values of a number of parameters describing a model vehicle suspension has been studied. The vehicle has been modelled by dynamic systems of linear springs and dampers, and the goal is to obtain lower acceleration peaks at an elected design point in the vehicle.

The problem is stated as a mathematical programming problem which can be solved by means of the sequential linear programming technique. The procedure has been implemented for a four wheel independent suspension model capable of being subjected to road irregularities and to centrifugal and braking accelerations.  相似文献   

11.
12.
ABSTRACT

Accurate identification of vehicle inertial parameters is essential to the design of vehicle dynamics control systems. In this paper, a novel vehicle inertial parameter identification method based on the dual H infinity filter (DHIF) for electric vehicles (EVs) is proposed. The filter algorithm employs a nonlinear longitudinal vehicle model with three vehicle states. A hierarchical framework is engaged by the DHIF to estimate the vehicle states and inertial parameters concurrently. In order to minimise the disturbance of unknown noise, the vehicle states are estimated by using the linear H infinity filter (LHIF), while the nonlinear H infinity filter (NHIF) utilises the observed states to identify the vehicle inertial parameters. Finally, the proposed estimation method is verified and compared through the dSPACE based hardware-in-the-loop (HIL) simulation experiments. The results indicate that the DHIF-based estimation method is effective to identify the vehicle inertial parameters with high precision, remarkable robustness, and quick convergence.  相似文献   

13.
SUMMARY

Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to conventional suspensions using passive elements such as springs and dampers. It is often assumed that if practical difficulties are neglected, active systems could in principle produce arbitrary ideal, behavior. It is shown, using a simple linear two degree-of-freedom suspension system, model that even using complete state feed back and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active case. If the ideal suspension performance is defined based on low-pass filtering of roadway unevenness inputs, an active suspension may not offer much better performance than a partially active or adaptive passive suspension depending upon the values of certain vehicle parameters.  相似文献   

14.
SUMMARY

This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

15.
SUMMARY

In this paper a simulation model of tractor-semitrailers suitable for design and performance analysis of anti-lock systems is presented. The model is used to evaluate the effects of various methods of prediction and reselection of the anti-lock system on the braking performance of tractor-semitrailers. The characteristics and the equivalent control logic of a commercially available anti-lock system are examined and its deficiencies are identified. To rectify these deficiencies, improved methods of prediction and reselection are proposed. A comparison of the slip characteristics and braking effectiveness between the proposed and the commercially available systems is made. The effects of various types of control logic on the steerability and directional stability of tractor-semitrailers and on the air consumption of the brake systems will be examined in a separate paper.  相似文献   

16.
SUMMARY

Active control of non-stationary response of a single degree of freedom vehicle model with nonlinear passive suspension elements is considered in this paper. The method of equivalent linearization is used to derive the equivalent linear model and the optimal control laws are obtained by using stochastic optimal control theory based on full state information. Velocity squared quadratic damping and hysteresis type of stiffness nonlinearities are considered. The effect of the nonlinearities on the active system performance is studied. The performance of active suspensions with nonlinear passive elements is found to be superior to the corresponding passive suspension systems.  相似文献   

17.
SUMMARY

This paper presents the results of a parametric sensitivity analysis of a five-axle tractor-semitrailer vehicle combination using 3-DOF linear yaw/plane model. The first order logarithmic sensitivity functions are derived with respect to several vehicle design parameters. For stabilization of the vehicle's directional behaviour a fairly new control concept called “Active Unilateral Braking Control (AUBC)” acting on the tractor rear wheel's in order to produce a stabilizing yaw torque is investigated. The AUBC system improves not only the directional stability, but also affects the roll dynamics of the vehicle. The sensitivity of the controlled vehicle system with linear quadratic controller (LQR) is also examined, a robust controller design procedure is proposed as a result of the sensitivity analysis. The robustness of this controller in the presence of both internal (including parametric uncertainties, non-linear dynamics) and external disturbances (such as road irregularities and side wind) allows its implementation with confidence with a non-linear vehicle model. The applicability of this control system to a non-linear vehicle model is tested using a 34 DOF, non-linear vehicle model of the tractor-semitrailer combination.  相似文献   

18.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

19.
SUMMARY

Due to increased traffic congestion and travel times, research in Advanced Vehicle Control Systems (AVCS) has focused on automated lateral and headway control. Automated vehicles are seen as a way to increase freeway capacity and vehicle speeds while reducing accidents due to human error. Recent research in automated lateral control has focused on vehicle control during low-g maneuvers. To increase safety, automated lateral controllers will need to recognize and react to emergency situations.

This paper investigates the effects of vehicle and tire model order on the response of automated vehicles to an emergency step lane change using a controller based on linear vehicle and tire models. From these studies it is concluded that control strategies based solely on linear vehicle and tire models are inadequate for emergency vehicle maneuvers.

A strategy is then proposed to automatically control vehicles through emergency maneuvers. Here the response of a nonlinear vehicle model is used with a linear state model to optimize controller gains for nonlinear maneuvers. An emergency step lane change is used as a preliminary test of the method.  相似文献   

20.
SUMMARY

In this paper some results of theoretical and experimental investigations on the dynamic directional properties of heavy tractor-semitrailer vehicles are presented.

A nonlinear digital computer model was developed on which the theoretical system analysis is based. This model takes account of the nonUnear tire properties and the friction couple of the fifth wheel. A combination of numerical computation methods (Runge-Kutta and Newton-Raphson techniques) is used for the digital computer simulation.

Full scale road tests with articulated vehicles of 38 ton total weight were conducted for experimental validation of the used theoretical model. As input signals to the vehicle, predetermined steering wheel angle functions were used. The system output signals corresponding to these input functions were measured and stored.

A comparison of the obtained theoretical and experimental results shows a very good qualitative agreement and hence leads to the conclusion that the developed theoretical model can give consistent estimates of the basic dynamic vehicle properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号