首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Electronically Controllable Vehicle Suspensions   总被引:3,自引:0,他引:3  
The basic functions which suspensions must perform are described and categories of controllable suspensions based on the required amount of control power are defined. The kinds of devices which can be used in controllable suspensions are discussed as well as several basic control philosophies. Finally, fundamental theoretical and practical limitations in suspension performance are indicated.  相似文献   

2.
SUMMARY

Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to conventional suspensions using passive elements such as springs and dampers. It is often assumed that if practical difficulties are neglected, active systems could in principle produce arbitrary ideal, behavior. It is shown, using a simple linear two degree-of-freedom suspension system, model that even using complete state feed back and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active case. If the ideal suspension performance is defined based on low-pass filtering of roadway unevenness inputs, an active suspension may not offer much better performance than a partially active or adaptive passive suspension depending upon the values of certain vehicle parameters.  相似文献   

3.
SUMMARY

Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

4.
SUMMARY

In this paper, an optimal suspension system is derived for a quarter-car model using multivariable integral control. The suspension system features two parts. The first part is an integral control acting on suspension deflection to ensure zero steady-sate offset due to body and maneuvering forces as well as road inputs. The second is a proportional control operating on the vehicle system states for vibration control and performance improvement. The optimal ride performance of the active suspensions based on linear full-state feedback control laws with and without integral control together with the performance of passive suspensions are compared.  相似文献   

5.
ABSTRACT

Semi-active suspensions are those in which otherwise passively generated damper forces are modulated using feedback control and small amounts of control effort. Recently it was discovered that two-stage, ON-OFF, semi-active control would chatter between the ON and OFF states in a manner similar to bang-bang, active control systems. This chatter is dependent upon the switching algorithm. This paper describes the dynamics of this chatter and suggests alternative control policies for its cure.  相似文献   

6.
SUMMARY

The performance of neural networks to be used for identification and optimal control of nonlinear vehicle suspensions is analyzed. It is shown that neuro-vehicle models can be efficiently trained to identify the dynamical characteristics of actual vehicle suspensions. After trained, this neuro-vehicle is used to train both front and rear suspension neuro-controllers under a nonlinear rear preview control scheme. To do that, a neuro-observer is trained to identify the inverse dynamics of the front suspension so that front road disturbances can be identified and used to improve the response of the rear suspension. The performance of the vehicle with neuro-control and with LQ control are compared.  相似文献   

7.
SUMMARY

The paper provides a comprehensive survey of active railway suspensions, covering both basic concepts and significant practical implications around the world. A critical review of technological opportunities, both current and future, is included, and the final section takes a speculative look at long term trends.  相似文献   

8.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

9.
SUMMARY

This bibliographical list classifies the extensive literature related to the dynamic analysis and control design aspects of advanced ground vehicle suspension systems. It is restricted to the design of advanced suspensions for ride quality and safety. Brief generalized notices and definitions are presented.  相似文献   

10.
SUMMARY

Some linear stochastic control theory relevant to the design of active suspension systems subject to integrated or filtered white noise excitation is reviewed, and application of the theory to a particular problem is considered. The problem considered is the well known quarter car problem in which a control law which minimises a performance function representing passenger discomfort, suspension working space, and tyre load fluctuations is required. With full state feedback, the requirement for a formulation of the problem which leads to the system under consideration being observable and controllable is referred to, and it is shown how a well known coordinate transformation enables this requirement to be satisfied. With limited state (or output) feedback, problem formulations which will avoid potential numerical problems in deriving the optimal control are described. Example solutions are included in order to illustrate the methods.  相似文献   

11.
ABSTRACT

A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles’ dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles – mainly automobiles – the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle’s ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.  相似文献   

12.
SUMMARY

This paper proposes a new methodology for designing observers for automotive suspensions. Automotive suspensions are disturbance-affected dynamic systems. Semi-active suspensions are bilinear while active suspensions with hydraulic actuators are nonlinear. The proposed methodology guarantees exponentially convergent state estimation for both these systems. It uses easily accessible and inexpensive measurements. The fact that sprung mass absolute velocity of the suspension cannot be estimated in an exponentially stable manner with such measurements is also demonstrated.

Controllers using estimated states are implemented experimentally on the Berkeley Active Suspension Test Rig. Experimental results for two cases are presented : use of observer states to improve ride quality in an active suspension and use of observer states to reduce dynamic tire loading in a semi-active heavy vehicle suspension.  相似文献   

13.
SUMMARY

Active control of non-stationary response of a single degree of freedom vehicle model with nonlinear passive suspension elements is considered in this paper. The method of equivalent linearization is used to derive the equivalent linear model and the optimal control laws are obtained by using stochastic optimal control theory based on full state information. Velocity squared quadratic damping and hysteresis type of stiffness nonlinearities are considered. The effect of the nonlinearities on the active system performance is studied. The performance of active suspensions with nonlinear passive elements is found to be superior to the corresponding passive suspension systems.  相似文献   

14.
SUMMARY

Controllable dampers using electrorheological (ER) fluids have attracted considerable interest in recent years. They are proposed for use in semi-active suspensions for ground vehicles. The main advantages of ER fluid dampers are their fast response, ease of control, simple construction and low power requirements. This paper describes the development and testing of a high-voltage supply unit for modulating the damping force of an ER fluid damper. Experimental results on the vibration isolation characteristics of an ER fluid damper with different control strategies, obtained using a quarter-car model test rig, are also presented.  相似文献   

15.
SUMMARY

Active control systems offer significant functional advantages over passive systems; their introduction into production-line vehicles, however, is cautious and slow. This survey describes the recent progress in the analysis, design and technology of active controls in vehicles. It includes the state-of-the-art of their introduction into operation as well as their future potential in view of recent advances in technology and computer aided design strategies. The survey has been limited to suspensions for vehicles on roads and tracks.  相似文献   

16.
ABSTRACT

A two degree-of-freedom vehicle model is developed which incorporates passive, active, and semi-active secondary suspensions. The model is used to demonstrate the trade-offs which are inherent in attempting to provide desirable sprung weight isolation while at the same time controlling unsprung weight motions.

A linear model is used first in order to compare passive and active suspensions in an analytically understandable configuration. The semi-active suspension is inherently nonlinear and is compared to the others through computer simulation. The passive suspension is, of course, the most restrictive in providing simultaneous isolation of sprung and unsprung weight; however, the active suspension is also compromised in providing both functions. The semi-active suspension does an excellent job of tracking its active counterpart.  相似文献   

17.
SUMMARY

A class of active suspensions is presented which provides near optimum isolation of base motion as well as zero static deflection for force disturbances using a simple type of feedback. The load leveling effect is rapid with the system stabilized using isolated mass velocity feedback both for a semi-active damper and for the load leveler. The system can be made energy conservative and fail safe since the system reverts to a reasonable passive isolator if the load leveling effect and even if the active damping effect is switched off. The system could be incorporated in automotive vehicles with some extension of the feedback control to account for several aspects of body motion.  相似文献   

18.
Fully active ground vehicle suspensions which completely replace the passive spring and damper elements with a force generating actuator have required a significant amount of power. Alternative systems which retain compliant elements to handle high frequency isolation but include active elements to control the vehicle body attitude have been developed to reduce the power requirements. These suspensions are called “low bandwidth” or “fast load leveler” systems and they often incorporate semi-active dampers which produce high frequency controllable forces with low power requirements. Here, two contrasting attitude control systems are studied to show that actuator power can be significantly reduced if the actuator is used to vary a lever ratio instead of being used to compress the suspension spring directly. Both types of systems have been successfully implemented in prototype form. Bond graphs for idealized versions of the suspensions show clearly the significant differences in actuator power and energy requirements even though the abstract mathematical structures of the two systems are remarkably similar. Computer simulations confirm the analytical results.  相似文献   

19.
SUMMARY

This paper illustrates the use of nonlinear control theory for designing electro-hydraulic active suspensions. A nonlinear, “sliding” control law is developed and compared with the linear control of a quarter-car active suspension system acting under the effects of coulomb friction. A comparison will also be made with a passive quarter-car suspension system. Simulation and experimental results show that nonlinear control performs better than PID control and improves the ride quality compared to a passive suspension.  相似文献   

20.
SUMMARY

The high weight and critical conditions of wheel load distribution shown by crane vehicle supported on a special chassis, suggest hydro-pneumatic suspensions as most suitable so that they should replace the conventional mechanical types. The Instituto Tecnológico de Aragón, Zaragoza (Spain) in the collaboration with Industrias Luna S.A., Huesca (Spain) has been working on the analysis of hydro-pneumatic suspensions using bond graph techniques, different alternatives to their use being presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号