首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
With a simplified approach for creating road surface elevation information for simulation of vehicle vertical response to roadway unevenness, roadways for single and parallel track simulations and averaged roads for variable velocity simulation are developed. Sets of correctly chosen random roadway slopes are averaged appropriately for the variable velocity simulation. The procedure generates approximately “white” slope spectral density roadways in the frequency ranges of interest, and the elevation profiles are representative of average road profiles. The method is simple in practice yet suffices for many parameter studies of suspensions and vehicle dynamics.  相似文献   

2.
SUMMARY

A model of the relationship between a vehicle wheel and the unevenness of the road surface is defined. The wheel is considered to be of circular shape. For a given form of unevenness, the excitation functions are evaluated for the individual subsystems of the dynamic vehicle model having 5 degrees of freedom. The vehicle model traverses the uneven surface at a variable velocity. The model provides for the study of the complex dynamic phenomena which occur between the wheel and the unevenness. The response of the model also includes the dynamic stress on the drive when the wheel passes over the unevenness of the road surface.  相似文献   

3.
SUMMARY

Lateral control of vehicles in IVHS requires the installation of on-board sensors as well as the installation of roadway hardware such as cables, magnets, etc. Existing control approaches in PATH require road curvature and vehicle lateral position (with respect to the center of the lane) information. Hence these approaches rely on roadway sensors to obtain relative lateral position. These methods will necessitate infrastructural changes to the highway.

This paper introduces the concept of autonomous lateral control or auto-tracking. The method allows us to use only line-of-sight sensor information to effect vehicle control. We present a detailed vehicle model. Controllers have been proposed to demonstrate the effectiveness of the proposed auto-tracking scheme. We also examine the possibilities of using this method for lane change purposes in an automated highway system.  相似文献   

4.
SUMMARY

Vehicles which travel on uneven roadways or rough surfaces require power beyond that associated with air drag, rolling resistance or other sources of friction even though kinetic and potential energy may be conserved on the average. This is true because damped relative motions within the vehicle dissipate energy, and, even for nearly rigid vehicles, energy is lost at impact with the ground whenever the vehicle loses contact with the ground surface due to the finite downward acceleration of gravity.

Using elementary vehicle models, the nature and magnitude of the component of propulsive force associated with these energy loss mechanisms is estimated. In certain speed ranges, this force is found to vary dramatically with speed for several types of periodic roadway profiles studied. While the force due to unevennesss may be small compared to other forces for high-speed vehicles operating on smooth surfaces, it can be the major source of required power for off-road vehicles operating on very rough terrain.  相似文献   

5.
在对南昌市城区主干道港湾式公交停靠站调查的基础上,通过 Vissim 仿真模拟得到大量交通流数据,从港湾式站台设置的长度、站台乘客等待数量、路段车道数、路段车辆的平均速度、站台停止车辆数、以及进出口平均延误时间6个方面建立神经网络分析模型,以路段平均延误车辆/路段实际通行能力作为通行能力的影响折减,运用 Matlab 软件编程求得变量因素与输出影响的连接强度权值 W 与偏置值 B ,为港湾式公交站对路段通行能力影响提供了定量化影响系数。   相似文献   

6.
路线及路面条件设计阶段的安全性评价仿真系统   总被引:4,自引:0,他引:4  
以公路横断面数据为型值点,应用multi-quadric插值函数先后拟合出路面单元节点的平面坐标以及高程,并用大量的小三角形单元来逼近连续的路表曲面,从而获得适于行驶动力学仿真的三维路面模型。在ADAMS软件环境下,建立了轻型客车和轿车的整车模型以用于仿真时的动力学解算。研究了轮胎-路面的耦合方法及跟踪路中线的闭环路径控制策略、维持车速的速度控制策略。最后在ADAMS环境下形成了路线-驾驶员-车辆仿真识别系统,通过道路上的运行仿真,获得沿路线上的车辆行驶动力学响应,进而对公路几何线形和路面条件的安全性做出判断以及评价,并以某段二级公路为实例进行了仿真分析。结果表明:该仿真系统对于道路建成后事故多发路段的安全改善具有重要意义。  相似文献   

7.
SUMMARY

This work describes an analytical study of the dynamic behaviour of a tractor-semitrailer vehicle. A digital computer simulation was used to describe the longitudinal, vertical, and pitching motions of the vehicle travelling over a stationary random road surface. A man-seat model was also incorporated into the simulation. Vehicle response to road irregularities has been studied by assuming two different roads for loaded and unloaded cases.

Numerical results are presented for vehicle, showing system eigenvalues, power spectral densities and root mean square values of the linear and angular accelerations and displacements. Vehicle acceleration response is compared with the ISO riding comfort standard. All results for the loaded and unloaded cases and for smooth and rough roads indicated that an uncomfortable ride would result from vehicle response.  相似文献   

8.
SUMMARY

The literature concerned with road damage caused by heavy commercial vehicles is reviewed. The main types of vehicle-generated road damage are described and the methods that can be used to analyse them are presented. Attention is given to the principal features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Also discussed are those vehicle features which, to a first approximation, can be studied without consideration of the dynamics of the vehicle, including axle and tyre configurations, tyre contact conditions and static load sharing in axle group suspensions. The main emphasis of the paper is on the dynamic tyre forces generated by heavy vehicles: their principal characteristics, their simulation and measurement, the effects of suspension design on the forces and the methods that can be used to estimate their influence on road damage. Some critical research needs are identified.  相似文献   

9.
SUMMARY

Numerical design of vehicles having optimal straight line stability on undulating road surfaces requires an accurate vehicle model based on knowledge of the relevant phenomena. Therefore, vehicle behavior on undulating straight roads has been analyzed and modeled. Measurements on a flat road surface have shown that the dedicated vehicle model yields accurate simulation results of the steering response to medium steering wheel angle inputs. In addition, the model has been validated by measuring two vehicle responses during normal driving on an undulating straight road: viz. the responses to the small steering wheel angle input and to the input by the global inclination of the road surface.  相似文献   

10.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

11.
This paper investigates optimal roll control of an experimental articulated vehicle. The test vehicle and the mathematical model used to design the control strategies are presented. The vehicle model is validated against experimental data from the test vehicle in passive configuration. The initial controller design, performed by Sampson (Sampson, D.J.M. and Cebon, D., 2003a, Achievable roll stability of heavy road vehicles. Proc. Instn. Mech. Engrs, Part D, J. Automobile Engineering, 217(4), 269–287), is reviewed and adapted for the experimental vehicle. The effect of not controlling all the axles on the vehicle is investigated and a variable vehicle speed controller is designed by interpolating between constant speed controllers. Substantial reduction in normalized load transfer is achieved for a range of manoeuvres, both in steady-state and transient conditions.  相似文献   

12.
用于道路几何线形质量评价的仿真模型和动力学指标   总被引:1,自引:1,他引:1  
徐进 《公路交通科技》2007,24(11):114-119
以路线-驾驶者-车辆仿真系统为手段,模拟了车辆在路线上的运行情况。找出了车辆在危险位置有异常表现的运动学和动力学响应,研究这些响应沿路线上的变化过程,最后得到了能够准确描述行车安全性的指标,一类是评价几何线形是否满足汽车行驶动力学要求的指标,另一类是衡量路线宜人性的指标。运用这些指标,根据车辆在路线上的运行结果,能对处于设计阶段的路线设计质量做出有效的评价。以四川省某2级公路为应用实例,结果表明运用该方案能有效的识别出几何线形的设计缺陷。  相似文献   

13.
SUMMARY

Most tire data used for vehicle simulations is measured on laboratory test facilities. An investigation showed that the frictional properties of these laboratory machines can be quite different from actual road conditions. This paper describes a method to correct laboratory tire test data to be more like road data in order to achieve a higher degree of correlation between instrumented test- and simulation results.  相似文献   

14.
SUMMARY

The influence of vehicle handling on the possible avoidance of accident situations is discussed. lit is shown that accident reconstruction at present does not provide the necessary information to relate the cause of accidents to the lack of road worthiness of vehicles. It follows that the vehicle behavior in proximity of its performance limit must be determined in order to infer its accident avoidance potential.

The paper presents a review of the state-of-the-art of vehicle modeling, simulation of vehicle maneuvers and full scale testing. The application of the direct method of the stability theory is suggested as a possible means of obtaining performance limit envelopes which are necessary for establishing standards of the performance of vehicles.  相似文献   

15.
SUMMARY

An adaptive control scheme for a two-degree-of-freedom vehicle model with active suspension is proposed. The performance goal is to minimize the variance of vehicle body acceleration under inequality constraints imposed on the variance of either tire or suspension deflection. An active suspension is adapted to the changes in vehicle velocity and the type of road (or terrain) surface which is assumed to be reconstructable from the accelerometer measurements. The control gain factors are obtained by the iterative method taking advantage of stochastic linear control theory. The performance of the system is evaluated and compared to that of an active system with constant gain factors and a passive system with adjustable parameters.  相似文献   

16.
SUMMARY

The accelerated service life testing of automotive vehicles for durability to road roughness induced dynamic loads is often accomplished in the laboratory using road roughness simulation facilities [1–5]. However, such tests can also be accomplished by a carefully designed field operation on a test course [6], where both the speed of the vehicle and the roughness of die test course become variables that control the degree of the test acceleration. Field tests are generally harder to control than laboratory tests, but offer a greater degree of realism since the vehicle is fully operational during the test exactly as it will be in service. This paper formulates the criteria for accelerated service life tests on a test course, evaluates the assumptions that must be enforced to obtain valid results, and explores the sensitivity of the results to the critical test parameters, namely, the vehicle speed and the road roughness severity of the test course relative to the service environment.  相似文献   

17.
ABSTRACT

With higher level of vehicle automation, it becomes increasingly important to know the maximum possible tyre forces during normal driving. An interesting method in this respect is estimating the tyre–road friction from the resonance peak in the wheel speed signal, excited by road roughness. A simulation environment using the MF-Swift tyre model is proposed, which gives insight in the correctness and functioning of this method. From implementing the estimation algorithm and considering the tyre torsional vibration system, it is concluded that frequencies and damping ratios can be estimated with reasonable accuracy and that the trends observed with changing road friction are consistent. Furthermore, the proposed simulation environment gives opportunity to investigate other issues like robustness of the estimation method to road roughness. Additionally, the tyre modelling aspect of the estimation method is analysed and improvements are proposed.  相似文献   

18.
城市快速路出入口是引发相关路段及其周围路网拥堵的主要原因。交织流率和交织长度是影响出入口处交通运行的重要因素,并采用仿真方法对两者进行了分析,具体案例的Vissim仿真结果表明:通过总流量为4 900veh/h,流率比由0.15增加到0.4时,交织段均车延误增加2倍,交织车速降低将近40%;交织长度选取160~180m时,均车延误为1.3s,平均车速达到45.02km/h,是快速路出入口交织长度的合理值。  相似文献   

19.
ABSTRACT

So far, longitudinal motion control has focused on situations like highway driving, where disturbances of the road profile can be neglected. In this paper, we show how the Two Point Tire Model can be used to derive a novel feed-forward control law for a vehicle's longitudinal motion that considers the effects of the road profile and can complement existing control approaches. For this purpose, we recapitulate the basic model assumptions and equations and briefly discuss how it can be used on arbitrary road profiles. Two approaches for implementation in a real vehicle are presented. Comparisons of these approaches in simulation and to a human driver of an experimental vehicle show that the controller can deal with stepped obstacles of up to 14?cm in height. However, the control performance is essentially limited by the actuator delay and human drivers outperform the controller due to their ability of sensing subtle vehicle motions. The results indicate that the control performance can be further improved by using a preview on the necessary drive torque, which can be provided by the solution that we propose.  相似文献   

20.
利用汽车的两自由度模型,应用Simulink软件仿真分析了车速与路面不平度对车轮随机动载变化趋势的影响。同时也分析了车轮随机动载的大小对路面疲劳应力的影响,指出了不同车速和路面不平度引起的路面动力反应及损伤变化规律,即车速和路面不平度的增加将导致汽车动载的增加,从而加速路面的损伤。提出了针对路面状况调整车速可以降低车轮随机动载,从而达到减轻路面损伤的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号