首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust control algorithm for an anti-lock brake system is proposed. The method used is based on static-state feedback of longitudinal slip and does not involve controller scheduling with changing vehicle speed or road adhesion coefficient estimation. An improvement involving scheduling of longitudinal slip reference with longitudinal acceleration measurement is included. Electromechanical braking actuators are used in simulations, and the algorithm used in this study is shown to have high performance on roads with constant and varying adhesion coefficients, displaying nice robustness properties against large vehicle speed and road adhesion coefficient variations. Guidelines are provided for tuning controller gains to cope with unknown actuator delay and measurement noise.  相似文献   

2.
A traction control system (TCS) for two-wheel-drive vehicles can conveniently be realised by means of slip control. Such a TCS is modified in this paper in order to be applicable to four-wheel-drive vehicles and anti-lock braking systems, where slip information is not readily available. A reference vehicle model is used to estimate the vehicle velocity. The reference model is excited by a saw-tooth signal in order to adapt the slip for maximum tyre traction performance. The model-based TCS is made robust to vehicle modelling errors by extending it with (i) a superimposed loop of tyre static curve gradient control or (ii) a robust switching controller based on a bi-directional saw-tooth excitation signal. The proposed traction control strategies are verified by experiments and computer simulations.  相似文献   

3.
In this paper, a torque-estimation-based robust controller for passenger car torque converter clutch slip system is presented. The proposed robust controller uses only the measurements available from inexpensive sensors that are installed in current passenger vehicles for torque estimation and feedback control. A conventional full state observer along with a neural-network-based open-loop hydraulic actuator observer is designed to estimate the unknown driving load, and a neural-network-based turbine torque estimator considering the temperature of oil circulating the torque converter is developed for improved turbine torque estimation accuracy. The stability of the internal dynamics is also investigated, and the performance and robustness of the robust controller is validated by simulation studies.  相似文献   

4.
‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘attenuated slip demand’ (ASD) control, is proposed in order to rectify this. Results from simulations of vehicle performance are presented for combined braking and cornering manoeuvres with EBS and slip control braking with and without ASD control. The ASD controller enables slip control braking to provide directional performance comparable with conventional EBS while maintaining a substantial stopping distance advantage. The controller is easily tuned to work across a wide range of different operating conditions.  相似文献   

5.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

6.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

7.
This paper presents a detailed physical model of an electro-pneumatic system, used to control Variable Geometry Turbochargers (VGT). The VGT actuator system consists of two parts, a diaphragm based pneumatic actuator and a solenoid based Electro-pneumatic Pressure Converter (EPC). The proposed model copes with the pressure dynamics inside the pneumatic actuator, with special focus on the EPC. The dynamics of both parts have been modeled separately and combined into one model by parameterizing the effective flow area and the air mass flow through the pneumatic actuator. The variations in volume, temperature and air mass flow rate have been taken into account. The model so obtained serves mainly for studying the effect of actuator dynamics on the global engine system. For control purposes, the detailed model is simplified to reduce the calculation load. Both models are validated using experimental data obtained from an engine test bench.  相似文献   

8.
9.
分析了城市公交客车采用AMT的优势,阐述了选择气动执行机构原因。为验证气动执行机构的可行性,开发设计了一款基于公交客车五挡机械变速器的AMT气动执行机构,并装车进行了试验。试验结果表明,该执行机构简单可靠且成本低廉,具有很大的推广价值。  相似文献   

10.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

11.
This review of the state of the art emphasizes recent results that have been obtained in extending conventionalanalysis techniques to the treatment of “Highway Trains”, that is, to heavy trucks that have multiple articulation points and employ suspensions with multiple axles. Equations of motion applicable to the equilibrium turning performances of articulated vehicles are examined with respect to using analysis techniques involving steering gains, understeer gradients, effective wheel-bases, handling diagrams, and critical speeds. These examinations provide the basis for in sights into simplified approaches for understanding the steady turning mechanics of articulated, multi-axle vehicles riding on pneumatic tires.  相似文献   

12.
This paper presents a new multi-vehicle simulator for platoon simulation. The main new feature of the developed simulator is a network structure for the real-time simulation of multiple vehicles, each with a detailed powertrain and engine model. It has a small initial delay, which is determined by the number of connected PCs, but the actual simulation is performed and displayed in real-time after this initial and one-time delay. Several longitudinal controllers, including a PID controller with gain scheduling, an adaptive controller, and a fuzzy controller, are also implemented in the simulator. Various system parameters can be modified interactively in the simulator screen, which is very useful for simulating a platoon of heterogeneous vehicles, in which vehicles with different dynamics and different longitudinal controllers may be involved. The simulator provides an excellent tool to develop vehicle longitudinal controllers and to study platoon behaviors. The developed simulator is also effective in testing the effects of nonlinearities neglected in the controller design phase, such as actuator delays and gear shifting schedule.  相似文献   

13.
This paper presents a new multi-vehicle simulator for platoon simulation. The main new feature of the developed simulator is a network structure for the real-time simulation of multiple vehicles, each with a detailed powertrain and engine model. It has a small initial delay, which is determined by the number of connected PCs, but the actual simulation is performed and displayed in real-time after this initial and one-time delay. Several longitudinal controllers, including a PID controller with gain scheduling, an adaptive controller, and a fuzzy controller, are also implemented in the simulator. Various system parameters can be modified interactively in the simulator screen, which is very useful for simulating a platoon of heterogeneous vehicles, in which vehicles with different dynamics and different longitudinal controllers may be involved. The simulator provides an excellent tool to develop vehicle longitudinal controllers and to study platoon behaviors. The developed simulator is also effective in testing the effects of nonlinearities neglected in the controller design phase, such as actuator delays and gear shifting schedule.  相似文献   

14.
SUMMARY

This review of the state of the art emphasizes recent results that have been obtained in extending conventionalanalysis techniques to the treatment of “Highway Trains”, that is, to heavy trucks that have multiple articulation points and employ suspensions with multiple axles. Equations of motion applicable to the equilibrium turning performances of articulated vehicles are examined with respect to using analysis techniques involving steering gains, understeer gradients, effective wheel-bases, handling diagrams, and critical speeds. These examinations provide the basis for in sights into simplified approaches for understanding the steady turning mechanics of articulated, multi-axle vehicles riding on pneumatic tires.  相似文献   

15.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

16.
In this paper, a computational model of conventional engine mounts for commercial vehicles comprising elastic, viscous and friction functional components, which expresses the nonlinear behaviour of the dynamic stiffness and damping of mounts as functions of both frequency and amplitude of excitation, is developed. Optimisation approach is implemented to identify model parameters using measurement data. The developed model has been validated against measurement data for harmonic excitations with a frequency range of 5–100 Hz and an amplitude range of 0.025–2 mm employing three different engine mounts used in heavy trucks. The model shows good and admissible agreement with measurement data keeping the tolerance of estimation below 11%. Simulations of engine vibration dynamics are presented with both proposed model and commonly applied Kelvin–Voigt model of the mounts. The developed model can be used in complete vehicle advanced dynamic analyses and also in the design of semi-active and active engine mounting systems for commercial vehicles.  相似文献   

17.
Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.  相似文献   

18.
为了准确获取分布式驱动电动汽车状态参数信息,满足车辆稳定性控制系统的需求,提出一种基于蚁狮算法的无迹卡尔曼滤波状态参数估计器。针对无迹卡尔曼滤波(UKF)过程中噪声协方差矩阵的不确定性,采用蚁狮优化算法(ALO)对其进行寻优,并引入奇异值分解(SVD)的方法来维持噪声协方差矩阵的正定性,此外,基于指数加权最小二乘法对车辆侧偏刚度进行辨识并将其作为状态参数估计器输入。基于MATLAB/Simulink和CarSim联合仿真平台,建立分布式驱动电动汽车参数估计模型,分别进行双移线工况和正弦迟滞工况仿真,并基于A&D5435快速原型开发平台进行双移线工况实车试验。仿真与试验结果表明:相比于SVDUKF算法估计结果,双移线仿真工况下,基于ALO-SVDUKF算法估计得到的质心侧偏角和横摆角速度的均方根误差分别降低了55.7%、30.7%,正弦迟滞仿真工况下,均方根误差分别降低了58.1%、85.1%,且在车辆处于极限失稳状态时仍能维持较好的估计效果;双移线试验工况下,横摆角速度的估计值与实际测量值之间的均方根误差仅为0.938 4(°)·s-1;提出的基于ALO-SVDUKF算法的分布式驱动电动汽车状态参数估计器能够有效提高质心侧偏角和横摆角速度的估计精度,可为车辆稳定性控制提供精确的状态信息。  相似文献   

19.
A robust controller is designed for active steering of a high speed train bogie with solid axle wheel sets to reduce track irregularity effects on the vehicle’s dynamics and improve stability and curving performance. A half-car railway vehicle model with seven degrees of freedom equipped with practical accelerometers and angular velocity sensors is considered for the H control design. The controller is robust against the wheel/rail contact parameter variations. Field measurement data are used as the track irregularities in simulations. The control force is applied to the vehicle model via ball-screw electromechanical actuators. To compensate the actuator dynamics, the time delay is identified online and is used in a second-order polynomial extrapolation carried out to predict and modify the control command to the actuator. The performance of the proposed controller and actuator dynamics compensation technique are examined on a one-car railway vehicle model with realistic structural parameters and nonlinear wheel and rail profiles. The results showed that for the case of nonlinear wheel and rail profiles significant improvements in the active control performance can be achieved using the proposed compensation technique.  相似文献   

20.
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and?3°, and longitudinal slip ratios from 0 to?20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread–road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号