首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Validation of a MATLAB Railway Vehicle Simulation Using a Scale Roller Rig   总被引:1,自引:0,他引:1  
A 1/5 scale roller rig has been constructed for use in analysing the dynamic behaviour of railway vehicles. The roller rig includes a servo hydraulic system to allow a realistic input of track irregularities at the rollers and instrumentation is fitted to allow measurement of the position and acceleration of the bodies. This paper reports on the first stage in validating the behaviour of the roller rig using a relatively simple, linear computer model constructed in MATLAB. Initial results show good correlation between the behaviour seen on the roller rig and that predicted by the model.  相似文献   

2.
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel–roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel–rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel–roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.  相似文献   

3.
SUMMARY

A numerical simulation model of the roller test stand located at Munich and loaded by a bogie is discussed including its technical structure, the governing physical equations of motion and the structure of the simulation program.

Both, the set up of the mathematical and numerical models time and the computation time of simulation runs have been considerably reduced (by a factor of 20) using formula manipulation programs.

Simulation results concerning the
  • starting behaviour of a bogie,

  • stationary limit cycle behaviour of bogies with ideal and wear profile and

  • influence of gauge changes and spring/damper modifications on limit cycle behaviour of a bogie are presented, some of which are compared with experimental results gained from test facility measurements. The simulation results are in good agreement with the experimental results and provide an experimental verification of the roller rig simulation model presented.

  相似文献   

4.
Full-scale roller rigs for tests on a single axle enable the investigation of several dynamics and durability problems related with the design and operation of the railway rolling stock. In order to exploit the best potential of this test equipment, appropriate test procedures need to be defined, particularly in terms of actuators’ references, to make sure that meaningful wheel –rail contact conditions can be reproduced. The aim of this paper is to propose a new methodology to define the forces to be generated by the actuators in the rig in order to best reproduce the behaviour of a wheel set and especially the wheel –rail contact forces in a running condition of interest as obtained either from multi-body system (MBS) simulation or from on-track measurements. The method is supported by the use of a mathematical model of the roller rig and uses an iterative correction scheme, comparing the time histories of the contact force components from the roller rig test as predicted by the mathematical model to a set of target contact force time histories. Two methods are introduced, the first one considering a standard arrangement of the roller rig, the second one assuming that a differential gear is introduced in the rig, allowing different rolling speeds of the two rollers. Results are presented showing that the deviation of the roller rig test results from the considered targets can be kept within low tolerances (1% approximately) as far as the vertical and lateral contact forces on both wheels are concerned. For the longitudinal forces, larger deviations are obtained except in the case where a differential gear is introduced.  相似文献   

5.
The article describes the application of a 1:5-scaled roller rig with a two-axled experimental vehicle to the design of a torque-controlled railway wheelset. Particular attention is drawn to the scaling problem and the dynamic similarity laws behind it and in addition to the chosen scaling strategy. For the controller design of the active wheelset the experiments with the scaled vehicle were combined with multibody computer simulations. The complete mechatronic system has therefore been modelled using the SIMPACK-MATLAB/Simulink interface. The steering behaviour, typical for this particular active wheelset, is demonstrated by results from roller rig experiments.  相似文献   

6.
The Application of Roller Rigs to Railway Vehicle Dynamics   总被引:5,自引:0,他引:5  
Roller rigs have been built world-wide to research into the dynamics of railway vehicles and they have particularly been applied to the development of high-speed trains. This survey takes into consideration both full scale as well as small scale model roller rigs. Besides performance, most important experimental work and the emphasis of application, the scaling strategies of model test rigs and the differences involved in roller rig experiments are treated. Suggestions for potential future uses and developments are also given for this tool which is useful for demonstration and analysis of railway vehicle dynamic behaviour.  相似文献   

7.
Roller rigs have been built world-wide to research into the dynamics of railway vehicles and they have particularly been applied to the development of high-speed trains. This survey takes into consideration both full scale as well as small scale model roller rigs. Besides performance, most important experimental work and the emphasis of application, the scaling strategies of model test rigs and the differences involved in roller rig experiments are treated. Suggestions for potential future uses and developments are also given for this tool which is useful for demonstration and analysis of railway vehicle dynamic behaviour.  相似文献   

8.
This paper presents the results of an experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Tests were carried out under quasi-steady-state conditions, on a full-scale roller rig, and allowed to point out the effect of different parameters like the wheelset's angle of attack and the ratio between the vertical loads acting on the flanging and non-flanging wheels. On the basis of the test results, some existing derailment criteria are analysed in this paper and two new criteria are proposed. A model of wheel–rail contact is proposed for the mathematical modelling of the flange climb process, and numerical vs. experimental comparisons are used to obtain model validation.  相似文献   

9.
SUMMARY

A laboratory rig for testing hydraulic dampers using the ‘hardware-in-the-loop’ method is described, and the accuracy of the test method is investigated. A mathematical model of a hydraulic shock absorber is then developed. The model is suitable for vehicle simulations and has seven parameters which can be determined by simple dynamic measurements on a test damper. The shock absorber model is validated under realistic operating conditions using the test rig, and the relative importance of various features of the model on the accuracy of vehicle simulations is investigated.  相似文献   

10.
Parametric Excitation of a Single Railway Wheelset   总被引:1,自引:0,他引:1  
This paper presents the results of analytical, numerical and experimental investigations of a single railway wheelset. Periodic parametric excitation is added to one of the simplest linear mechanical models. This extended model describes, for example, the geometric deviations often experienced on roller rigs. Above a certain critical speed, the stationary running of the wheelset loses its stability. To verify the analytical and numerical results for the critical speed, experiments were carried out on a simple roller rig having a large ratio of the radii of the roller and the railway wheel.  相似文献   

11.
This paper presents the results of analytical, numerical and experimental investigations of a single railway wheelset. Periodic parametric excitation is added to one of the simplest linear mechanical models. This extended model describes, for example, the geometric deviations often experienced on roller rigs. Above a certain critical speed, the stationary running of the wheelset loses its stability. To verify the analytical and numerical results for the critical speed, experiments were carried out on a simple roller rig having a large ratio of the radii of the roller and the railway wheel.  相似文献   

12.
SUMMARY

Controllable dampers using electrorheological (ER) fluids have attracted considerable interest in recent years. They are proposed for use in semi-active suspensions for ground vehicles. The main advantages of ER fluid dampers are their fast response, ease of control, simple construction and low power requirements. This paper describes the development and testing of a high-voltage supply unit for modulating the damping force of an ER fluid damper. Experimental results on the vibration isolation characteristics of an ER fluid damper with different control strategies, obtained using a quarter-car model test rig, are also presented.  相似文献   

13.
SUMMARY

Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

14.
SUMMARY

The dynamical behaviour of the longitudinal motion of a long train on which tractive or braking forces apply, often is investigated by representing the train by a model consisting of a continuous bar in which longitudinal vibrations can occur. In the present publication a model consisting of a chain of material points and springs is proposed. It can be investigated by means of difference equation methods and of Laplace transformations. In certain respects the discrepancies of the results with those obtained for a continuous model, are considerable and it may be concluded that a more complete investigation of the discrete model is necessary.  相似文献   

15.
ABSTRACT

The tyre plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tyre into the vehicle. There are two basic ways to study noise, vibration, harshness (NVH) behaviour: Simulations in time and frequency domains. Modelling the tyre transfer behaviour in frequency domain requires special attention to the rotation of the tyre. This paper shows the approach taken by the authors to include the transfer behaviour in the frequency range up to 250?Hz from geometric road excitations to resulting spindle forces in frequency domain. This paper validates the derived NVH tyre model by comparison with appropriate transient simulations of the base transient model.  相似文献   

16.
ABSTRACT

Dynamic wheel–rail interaction in railway turnouts is more complicated than on ordinary track. In order to evaluate the derailment behaviour of railway wheelsets in railway turnouts, this paper presents a study of dynamic wheel–rail interaction during a wheel flange climbs on the turnout rails, by applying the elasticity positioning wheelset model. A numerical model is established based on a coupled finite element method and multi-body dynamics, and applied to study the derailment behaviour of a railway wheelset in both the facing and trailing directions in a railway turnout, as well as dynamic wheel–turnout rail interaction during the wheel flange climbing on the turnout rails. The influence of the wheel–rail attack angle and the friction coefficient on the dynamic derailment behaviour is investigated through the proposed model. The results show that the derailment safety for a wheelset passing the railway turnout in facing direction is significantly lower than that for the trailing direction and the ordinary track. The possibility of derailment for the wheelset passing the railway turnout in facing and trailing directions at positive wheel–rail attack angles will increase with an increase in the attack angles, and the possibility of derailment can be reduced by decreasing the friction coefficient.  相似文献   

17.
This paper presents the results of an experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Tests were carried out under quasi-steady-state conditions, on a full-scale roller rig, and allowed to point out the effect of different parameters like the wheelset's angle of attack and the ratio between the vertical loads acting on the flanging and non-flanging wheels. On the basis of the test results, some existing derailment criteria are analysed in this paper and two new criteria are proposed. A model of wheel-rail contact is proposed for the mathematical modelling of the flange climb process, and numerical vs. experimental comparisons are used to obtain model validation.  相似文献   

18.
19.
The expressions for the longitudinal creepage, lateral creepage and spin quantities are derived for a railway wheelset on a roller rig. The analysis takes into account the initial canting and the yaw motion of the rollers. A reduced set of Equations of motion representing the four degrees of freedom is also derived.  相似文献   

20.
SUMMARY

This paper describes the modelling of a two axle railway-bogie with variable design configurations and its application in the investigation of the behaviour in transitional and circular curves. Several results indicate possibilities to improve the curving properties and recommend the usage of forced-steering bogies, which show better performance in narrow curves without unbearable sacrifices to high-speed-behaviour on straight track.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号