首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY

A survey is given of the theory developed by author during recent years for an optimal design of railway vehicle running gears. It enables the designer to build a running gear which at the same time has good curving properties and is stable up to a high vehicle speed.  相似文献   

2.
SUMMARY

In this paper have been described

- railway runability problems on large span bridges;

- the state-of-art of the methodologies adopted for a systematic analysis of the dynamic behaviour of railway vehicles running on a deformable structure, with particular reference to large span suspension bridges;

- some meaningful experimental and analytical results, related to railway runability of large span bridges.  相似文献   

3.
SUMMARY

The lateral dynamics of an uncontrolled motorcycle, running on a straight, level road surface, is investigated in this paper. The structural compliances in the front and the rear frames of the motorcycle are taken into account by introducing additional degrees of freedom in the analysis. The kinematics of the tires is represented by linear differential equations which are based on the taut-string model of pneumatic tires. The linear differential equations of motion are solved to yield the eigensolutions of the system. Numerical results, obtained for parameters corresponding to a Honda CB750 motorcycle, are presented and discussed.  相似文献   

4.
SUMMARY

An unconventional method for calculating the forces developing in the wheel and rail contact patches of a railway vehicle has been implemented at the New Technology Laboratory of INRETS. It takes into account the elastic deformations of the materials in the Hertzian elliptical contact areas; the possibility of having simultaneously several contact patches on each wheel, is introduced in the simulation of the dynamic phenomena.

The theory is applied for a high speed bogie running on a perfectly straight track.  相似文献   

5.
SUMMARY

The computer modelling of vehicle ride and handling has been widely reported, but often only one or other of these functions is considered. This is especially true in the design of active suspension controllers, where the effects that improvements in the performance of one aspect have on the other are often not presented. This paper initially describes a combined ride and handling model for a large executive saloon fitted with a slow-active suspension. Separately derived ride and roll control strategies are combined and the effects on both ride and handling considered for straight running and various handling man?uvres on rough roads. The results are compared to the original passively suspended vehicle and the effect of running each strategy separately.  相似文献   

6.
7.
SUMMARY

A comparison between theoretical calculations on dynamic lateral behaviour of railway vehicles and experimental results shows quite a sizeable difference between the calculated critical speed and the actual speed at which side impact phenomena will repeatedly occur between wheel flange and rail (running speed limit), such impact speed being remarkably lower than calculated.

Another typical experimental aspect is that the running speed limit will considerably vary for the same vehicle depending on the test track conditions. Such difference is usually attributed to alterations of the wheel-rail contact surfaces, only.

This paper will discuss some concurrent causes which may prove far from negligible, such as the effects of track defects, an amplification of the dynamic lateral displacement between wheel and rail on approaching the critical speed, the track mechanical properties, and in particular the track lateral rigidity.

The influence of some geometrical factors typical of the wheel-rail contact, such as side clearance and linearized conicity, will also be discussed. The approach is based on the application of statistical methods to dynamic linear systems.  相似文献   

8.
SUMMARY

The technical state-of-the-art of aerodynamics of ground transportation vehicles is reviewed. Currently available theoretical calculation methods and experimental simulation techniques as well as typical results illustrating the impact of aerodynamics on vehicle performance and running characteristics are summarized and the interactions between vehicle system dynamics and aerodynamics are adressed. Correlation of theoretical and experimental data show the present potential of vehicle aerodynamics and point to fields in which further research work is necessary.  相似文献   

9.
ABSTRACT

This paper presents an analysis of loaded freight wagon dynamics in curve alignments. We investigate the effects of the combined centre of gravity (CCOG) on the running safety of freight wagons and examine proper position of the CCOG. A simple wagon-rail model is implemented using the multibody dynamics software ADAMS/Rail. The simulation model is operated on curve tracks with various radii and velocities and the curving performances are evaluated. The results indicate that the CCOG can be located within a flexible and accurate range. The longitudinal offset is good for the curving performance and the permissible lateral offset should be assessed based on the curve radius and cant deficiency.  相似文献   

10.
ABSTRACT

During straight-ahead running, the longitudinal axis of road vehicles, notably cars, is not parallel to road axis. This occurrence is general and is due both to road cross slope (road banking) and to tyre characteristics, particularly ply-steer and conicity. In order to describe such a phenomenon, the paper develops a new and relatively simple analytical model. Despite the model is linear, the solution which is provided is exact, since straight-ahead motion occurs with small angles and both the elastokinematics of suspension system and tyre characteristics can be modelled by linearised equations. The Handling Diagram theory is updated and completed by introducing the actual shifts of tyre characteristics. The validation of the analytical expressions is performed by using a MSC AdamsTM full model of a car. A subjective-objective experimental test campaign provides preliminary substantiation of the ability of the derived formulae to describe tyre performance. By means of the unreferenced analytical formulae developed in the paper, we allow, given the vehicle, the proper tyre design specification and vice-versa. In particular, a formula is given to make null the steering torque during straight-ahead driving. The derived analytical formulae may provide a sound understanding of the straight-ahead running of road vehicles.  相似文献   

11.
12.
ABSTRACT

The dynamic performance of a flat car is studied herein. The performance indices include roll angles, lateral accelerations, center plate loads, side bearing loads, wheel loads and spring deflections. These variables are maximum when the car is running at its critical speed, corresponding to either the rock and roll, or the bounce mode. The Association of American Railroads' (AAR) Flexible Carbody Model was used. The input for vertical track irregularities used in the simulation was generated from published spectra for U.S. Federal Railroad Administration (FRA) Class 4 track. After studying the car's performance with various column loads and spring suspensions, it was found that the most commonly used column load of 4,000 lbs. (17.8 kN) should be used. The spring suspension used in the original car design should also be adopted, in order to avoid spring. bottoming.  相似文献   

13.
SUMMARY

The alteration in wheel and rail profiles due to wear involves considerable vehicle and track-maintenance costs, and influences the loading capacity of the rails, as well as the operation safety and riding comfort of the vehicles. In the past twenty years a vehicle dynamics, contact mechanics and tribology based research work has emerged which is also recently continuous in an international scale, and this research is more and more intensive. Parallel to the growing possibilities of computer based analyses, several algorithms and numerical procedures have been elaborated, as well as measurement based experiments have been carried out to establish the reliable prediction of wear-caused wheel and rail profile alterations and to maximise the mileage performance by selecting the optimum vehicle system parameters for running gears operating on a selected railway line or a whole network under specified -in general inherently stochastic - traffic conditions. This paper takes an attempt to introduce the extended sphere of problems of wheel and rail wear prediction, as well as the latest results reflecting the present state of the art.  相似文献   

14.
SUMMARY

A new tyre model for studies of motorcycle lateral dynamics, and three new motorcycle models, each incorporating a different form of structural compliance, are developed. The tyre model is based on “taut string” ideas, and includes consideration of tread width and longitudinal tread rubber distortion and tread mass effects, and normal load variation. Parameter values appropriate to a typical motorcycle tyre are employed. The motorcycle models are for small lateral perturbations from straight running at constant speed, and include (a) lateral compliance of the front wheel in the front forks, (b) torsional compliance of the front forks, and (c) torsional compliance in the rear frame at the steering head about an axis perpendicular to the steering axis.

Results in the form of eigenvalues, indicating modal damping properties and natural frequencies are presented for each model. The properties of four large production machines for a range of forward speeds, and the practicable range of stiffnesses are calculated, and the implications are discussed.

It is concluded that typical levels of structural compliance in models (a) and (c) contribute significantly to the steering behaviour properties of large motorcycles, and their observed behaviour can be understood better in terms of the new results than of those existing previously. Some conclusions relating to optimal structural stiffness properties are also drawn.  相似文献   

15.
SUMMARY

The transportation of ore can be made more cost efficient by use of bigger and heavier trains. An increase in axle load is thereby wanted. The fleet of ore wagons of today at Malmbanan/Ofotbanan in northern Sweden and Norway has to be updated. It is of interest to find out if it is possible to allow a higher axle load on the track with new wagons

To be able to understand and predict the effects on track wear depending on what type of vehicle that is in use, the contact forces between wheels and rails have to be determined. A computer aided analysis has been made of the dynamic behaviour of three test vehicles equipped with different types of three-piece bogies running at Malmbanan. The vehicles are modelled and their interaction with the track is analysed using the multibody simulation package GENSYS

The simulations show that, even if the axle load is increased from 25 tons to 30 tons and the velocity is increased from 50 km/h to 60 km/h, it is possible to reduce lateral track forces and wear in curves by using a different bogie than the standard three-piece bogie used today.  相似文献   

16.
ABSTRACT

High-speed electric multiple units (EMUs) have been popularised rapidly all around the world and have become a major transportation method. Increases in running velocity and wheel-rail deterioration lead to excessive vibration and reduced ride comfort, which are common issues encountered in the operation of high-speed EMUs. While built-in sensors on a car body are able to detect abnormal vibrations in the car body itself, they cannot effectively reflect the ride comfort of passengers. Wheel-rail profile matching can improve the wheel-rail interaction, and rail grinding has thus been introduced as a practical solution to alleviating the aforementioned problems. Nonetheless, the working mechanism of rail grinding has not been investigated theoretically. This study develops flexible car body and human body models based on the rigid-flexible coupled method to systematically study the effects of wheel-rail wear and rail grinding on passenger ride comfort. Case studies show that the proposed models can predict the ride comfort of passengers accurately. It is also demonstrated that rail grinding can significantly alleviate excessive vibration and improve passenger ride comfort in the long term. A long-term investigation reveals that rail grinding can improve the smoothness of the rail surface and reduce the damage to the rail.  相似文献   

17.
ABSTRACT

Collision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions.  相似文献   

18.
SUMMARY

This paper describes a multiport approach to computer-aided modeling of vehicle dynamics. The modeling approach produces models that are suitable for the interactive design and evaluation of complex control strategies. The vehicle model which can be used for ride and handling analysis, is built from modular components. The components are programmed using the syntax of the computer aided control system design (CACSD) program EASYS. Seven modeling components are used to create a three-dimensional vehicle dvnamics model. The model is flexible enoug-h to simulate any suspension design with revolute joints.

Each component of the model consists of a FORTRAN subroutine and a main calling module called a macro. To simplify the process of model building, the modeling components in the car model are designed to represent physical elements, such as the spring, damper, link or tire. To create a model, the components, which are represented by blocks, are interconnected through points, located on the blocks, called pons. These ports have been designed to simulate the location of the connection points between the physical elements, as observed in real systems. The construction of multibody models within a CACSD program offers the flexibility of simultaneous interactive simulation of the three-dimensional dvnamics and evaluation of the desien of the controls.

Although modeling of multibody systems using FORTRAN components has been pioneered by Chace, Haug and Orlandea; and bond graph modeling of multibody systems has been investigated by Bos, this approach is novel because:-

The model is included in the control system design program (EASYS). This arrangement allows the designer to exploit the advanced control design tools available in the program. Furthermore, this approach significantly reduces the computation time required for running the model after parameters modification.

The model is built from components that are interconnected by ports which represent the actual physical location of the connection points between the elements. The multiport approach simplifies the model building process for multibody systems. This simplification is achieved by reducing the model of a multibody system to a block diagram form.  相似文献   

19.
SUMMARY

Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

20.
SUMMARY

This paper is concerned with the braking performance and the handling behavior of the tractor-semitrailer truck under optimal braking. Optimal control theory is used in order to deal with the problem and a combination of the steepest descent method and the Davidon Fletcher Powell method is used to solve it numerically. Results for some chosen braking maneuvers are obtained for a nonlinear truck model which has 14 degrees of freedom. These results show that, for the chosen maneuvers an idealized anti-skid braking is close to being optimal in the sense defined in this paper. Implementation of an idealized anti-skid braking on the tractor-semitrailer truck, however, may be not desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号