首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
对汽车平顺性评价方法的探讨与建议   总被引:4,自引:0,他引:4  
首先分析了现行国家标准GB4970-1996<汽车平顺性随机输入行驶试验方法>与国际上通行的人体振动评价标准ISO2631-1997的区别.通过道路试验测量了驾驶员坐垫、靠背和脚部的平移振动以及坐垫的旋转振动共lO个方向的振动.分析发现汽车中人体振动的峰值因子一般小于9;而按照GB4970和ISO2631的试验数据对比表明,GB4970在一定程度上低估了人体振动.分析各方向振动所占的比例发现,坐垫垂向振动、靠背前后振动和坐垫侧倾振动影响最大.最后提出了对汽车平顺性评价方法的建议.  相似文献   

2.
The influence of the tyre–road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre–road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre–road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.  相似文献   

3.
王乾廷  周晓军 《汽车工程》2006,28(12):1066-1069
为了在越野行驶车辆平顺性仿真系统中实时动态反映车辆的振动特性,提出了基于小波变换的松软越野路面突变性描述方法并分析突变性对车辆垂向振动的影响。通过小波变换对路面奇异点进行测定和定位,把越野车辆平顺性仿真系统看作是在有限时间内受到随机载荷激励的动力系统,分析其受路面突变载荷的车辆的垂直振动响应方差。结果表明,小波变换能较准确地判定路面奇异点并对其定位,可为越野车辆平顺性虚拟测试系统提供路面随机输入。  相似文献   

4.
采用模拟随机输入路面谱激励室内台架试验的方法,对装有新型橡胶弹簧悬架系统的某型号铰接式自卸车进行台架试验研究,以评价橡胶弹簧悬架系统的减振性能和整车行驶平顺性。试验结果表明由于橡胶弹簧悬架系统某些参数匹配不合理导致该车行驶平顺性很不理想,通过优化悬架及座椅的刚度和阻尼参数,可提高整车行驶平顺性,并给出了座椅弹簧的优化结果。  相似文献   

5.
时磊 《汽车科技》2012,(3):22-26
针对某车辆在行驶试验时,在车速57 km/h时出现低频5.4 Hz的驾驶室异常振动的现象,振动形式为俯仰振动,人体乘坐舒适性主观感觉很差。先后采用多种常规振动分析试验方法对该车进行振动分析,也未能分析出引起驾驶室异常振动的原因。最后对该车的车架和驾驶室进行模态试验分析,分析判断得出该车在行驶时驾驶室异常振动的频率与车架整体一阶弯曲时的接近,由此判断该车驾驶室异常振动是由车架整体-阶弯曲引起的。根据试验分析结果,文章最后对某车问题的改进方案综合评价后提出了合理的改进方案。  相似文献   

6.
铰接式自卸车悬架系统动力学建模与仿真   总被引:3,自引:0,他引:3  
建立了一个铰接式自卸车9自由度线性动力学模型,并用Matlab语言编写了基于Simpson算法的仿真程序,来仿真它对路面随机输入的响应,用以计算数种工况下座椅总加权加速度均方根值。仿真结果表明,所建模型能较好地吻合座椅的实际振动,不仅可以正确评估系统的平顺性性能,还可为新型铰接车辆悬架系统、橡胶弹簧的优化设计提供理论和方法支持。  相似文献   

7.
基于柔性模型的多轴汽车平顺性的仿真研究   总被引:2,自引:0,他引:2  
基于弹性梁弯曲振动理论和模态分析法建立了多轴汽车平顺性分析的柔性模型。按照汽车行驶平顺性评价方法,运用建立的柔性模型,分析了车速、路面等级、悬挂质量的分布、车架刚度以及悬架系统的刚度和阻尼对多轴汽车平顺性的影响。分析结果表明:悬挂质量的弯曲振动是影响多轴汽车行驶平顺性的一个不可忽略的重要因素;常用的刚体模型不能准确地描述多轴汽车的平顺性,不适合用于多轴汽车平顺性的分析。  相似文献   

8.
Wheel shimmy and wobble are well-known dynamic phenomena at automobiles, aeroplanes and motorcycles. In particular, wobble at the motorcycle is an (unstable) eigenmode with oscillations of the wheel about the steering axis, and it is no surprise that unstable bicycle wobble is perceived unpleasant or may be dangerous, if not controlled by the rider in time. Basic research on wobble at motorcycles within the last decades has revealed a better understanding of the sudden onset of wobble, and the complex relations between parameters affecting wobble have been identified. These fundamental findings have been transferred to bicycles. As mass distribution and inertial properties, rider influence and lateral compliances of tyre and frame differ at bicycle and motorcycle, models to represent wobble at motorcycles have to prove themselves, when applied to bicycles. For that purpose numerical results are compared with measurements from test runs, and parametric influences on the stability of the wobble mode at bicycles have been evolved. All numerical analysis and measurements are based on a specific test bicycle equipped with steering angle sensor, wheel-speed sensor, global positioning system (GPS) 3-axis accelerometer, and 3-axis angular velocity gyroscopic sensor.  相似文献   

9.
汽车平顺性时域仿真分析   总被引:6,自引:0,他引:6  
采用虚拟试验场技术进行了汽车行驶平顺性的时域仿真。建立了面向汽车平顺性分析的整车刚弹耦合有限元模型,同时建立了脉冲输入路面模型和随机输入路面模型。采用1/3倍频带分布加速度均方根值方法及总加权方法对试验车辆的平顺性进行了评价。试验结果表明,运用虚拟试验场技术能够真实地反映汽车的行驶平顺性,仿真分析结果可靠。  相似文献   

10.
11.
Idle vibration, occurring when a vehicle comes to a stop while the engine is on, is known to be a main cause of discomfort for passengers, and the customer effect has been recently growing. The frequency of idle vibration is determined by the engine type. To lower the vibration, various technologies have been applied to optimize the engine mount and vehicle body structure. In addition to the technological developments, research on human response with a consideration of idle vibration is needed to effectively reduce the level of discomfort experienced by passengers. Seats aimed at enhancing static comfort influence the sitting posture of passengers; sitting posture is a factor affecting human body characteristics that response to idle vibration. This study examined the absolute discomfort threshold of idle vibration according to the sitting postures of 13 taxi drivers. The four sitting postures of subjects on a rigid-body seat without a backrest were variables in the determination of absolute discomfort threshold of idle vibration. The absolute discomfort threshold curves obtained in this experiment were less sensitive to frequency changes than the frequency weighting function of ISO 2631-1.  相似文献   

12.
座椅刚度和阻尼参数的选取,直接影响座椅的乘坐舒适性。采用CAE技术,对某中型卡车司机座椅进行动力学响应分析,并对座椅的弹簧刚度和减振器阻尼参数进行动力学优化,优化后座垫上的加速度峰值大幅降低,取得了比较好的效果。通过平顺性试验验证,优化后的座椅结构在各种车速下,总计权值明显低于原结构。摸索出了一条运用CAE技术对机械式座椅的乘坐舒适性进行分析和优化的途径。  相似文献   

13.
The random vertical vibration of two linear models of a sprung mass with a passenger on seat is numerically solved. The input signal has a power spectrum of a real road. The acceleration of the passenger is frequency-weighted according to two various criteria. The gain in comfort obtained by lowering the natural frequency of the sprung mass is calculated along with the dynamic and static spring deflections. In addition, a solution of the vibration of the unsprung mass with evaluation of a possible improvement is presented.  相似文献   

14.
伍兴俊  郭永进  余海东 《汽车工程》2007,29(10):905-908,922
采用有限元与多体动力学相结合的方法分析了车身板件对振动的影响,改变车身板件局部结构,在对振动影响最大的前后地板上增加加强筋后对整车进行振动响应模拟,揭示了车身板件结构对汽车在路面激励下行车舒适性的影响。分析表明,在地板上增加加强筋可以极大地提高汽车的行车舒适性。  相似文献   

15.
For the complex structure and vibration characteristics of the seat and cab system of truck, there is no reliable theoretical model for the suspensions design at present, which seriously restricts the improvement of ride comfort. In this paper, a 4 degree-of-freedom seat-cab coupled system model was presented; using the mechanism modeling method, its vibration equations were built; then, by the tested cab suspensions excitations and seat acceleration response, its parameters identification mathematical model was established. Combining the tested signals and a simulation model with the parameters identification mathematical model, a new method of hybrid modeling of seat-cab coupled system was presented. With a practical example of seat and cab system, the parameters values were identified and validated by simulation and test. The results show that the model and method proposed are correct and reliable, and lay a good foundation for the optimal design of seat suspension and cab suspensions to improve ride comfort.  相似文献   

16.
为了分析脉冲路面下轮毂电机偏心对电动汽车平顺性的影响,给出了脉冲路面车轮激励和开关磁阻电机激励的表示。建立了考虑轮毂电机质量和轮毂电机激励的电动汽车平面4自由度振动模型,推导出相应的状态方程和输出向量,确定了脉冲路面平顺性评价指标。实现了脉冲路面车轮激励和轮毂电机激励的仿真,在脉冲路面下进行了4种工况的平顺性仿真和比较。结果表明,脉冲路面下轮毂电机偏心对电动汽车平顺性有着不可忽视的影响,设计电动汽车时需要考虑轮毂电机偏心带来的负效应。  相似文献   

17.
吴碧磊  秦民  李幼德  程超  王新宇 《汽车工程》2006,28(12):1057-1061
通过计算机仿真模拟了在路面随机输入下驾驶室底板的振动响应;利用Nastran软件对车身的有限元模型进行模态抽取,建立了刚弹耦合模型;对多刚体模型、刚弹耦合振动模型的计算结果与试验进行了对比,验证了模型的正确性;以驾驶室悬置的弹簧刚度、减振器阻尼为影响因素,通过虚拟DOE正交试验分析,显著改善了驾驶室的乘坐舒适性。  相似文献   

18.
Shock-type vibrations are frequently experienced in vehicles excited by impulsive input, such as bumps in the road, and cause discomfort. Current national and international standard weightings were primarily developed for assessing exposure to sinusoidal or random vibrations and not impulsive excitations or shocks. In this experimental study, various shock signals were systematically produced using the response of a one degree-of-freedom vibration model to hanning-windowed half-sine force input. The fundamental frequency of the shock was varied from 0.5 to 16 Hz at a step of 1/3 of an octave. The magnitude estimation method was used for fifteen subjects to compare the discomfort of shocks with various unweighted vibration dose values between 0.35 ms−1.75 and 2.89 ms−1.75 at each frequency. The equivalent comfort magnitude of shock showed greater sensitivity at frequencies less than 0.63 Hz and at the resonance frequency of the human body between 5.0 Hz and 6.3 Hz. The frequency weighting constructed by using both the equivalent comfort magnitude and the growth rate of discomfort obtained in this study was compared with the current standard weightings, Wb of BS 6841 and Wk of ISO 2631. The derived weightings for shock were applied to the acceleration of the shocks, and an enhanced correlation was proved between the magnitude estimations and the weighted physical magnitude of shock.  相似文献   

19.
A bond graph model of a mountain bike and rider is created to develop baseline predictions for the performance of mountain bikes during large excursion maneuvers such as drops, jumps, crashes and rough terrain riding. The model assumes planar dynamics, a hard-tail (front suspension only) bicycle and a rider fixed to the bicycle. An algorithm is developed to allow tracking of a virtual tire-ground contact point for events that separate the wheels from the ground. This model would be most applicable to novice mountain bikers who maintain a nearly rigid relationship between their body and the bicycle as opposed to experienced riders who are versed in controlling the bicycle independent of the body. Simulations of a steep drop are performed for various initial conditions to qualitatively validate the predictions of the model. Results from this model are to be compared to experimental data and more complex models in later research, particularly models including a separate rider. The overarching goals of the research are to examine and understand the dynamics and control of interactions between a cyclist and mountain bike. Specific goals are to understand the improvement in performance afforded by an experienced rider, to hypothesize human control algorithms that allow riders to perform manoeuvres well and safely, to predict structural bike and body forces from these maneuvers and to quantify performance differences between hard-tail and full suspension bicycles.  相似文献   

20.
Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions (‘Pareto-optimal solutions’) are also obtained by considering the trade-off between ride comfort and road handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号