首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a mathematical model of a limited bandwidth hydro-pneumatic suspension that is incorporated into a vehicle handling model is described. The combined model is used to evaluate a suitable control strategy for eliminating body roll during a cornering manoeuvre. The philosophy behind the roll control strategy has been to use feedback measurements of the body motions which do not compromise the ride control. A study of the influence of the position of the body motion feedback transducer on the effectiveness of the system to reduce the body roll is presented. Non-linear modelling of the suspension components for a 0.8g cornering manoeuvre has revealed performance limitations. Conclusions are drawn as to the effectiveness of the control scheme.  相似文献   

2.
ABSTRACT

In this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity.  相似文献   

3.
SUMMARY

This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

4.
ABSTRACT

This paper introduces the concept of managing air in commercial vehicle suspensions for reducing body roll. A conventional pneumatic suspension is re-designed to include higher-flow air hoses and dual levelling valves for improving the dynamic response of the suspension to the body roll, which commonly happens at relatively low frequencies. The improved air management allows air to get from the air tank to the airsprings quicker, and also changes the side-to-side suspension air pressure such that the suspension forces can more readily level the vehicle body, much in the same manner as an anti-roll bar (ARB). The results of a multi-domain simulation study in AMESim and TruckSim indicate that the proposed suspension configuration is capable of providing balanced airflow to the truck’s drive-axle suspensions, resulting in balanced suspension forces in response to single lane change and steady-state cornering steering maneuvers. The simulation results further indicate that a truck equipped with the reconfigured suspension experiences a uniform dynamic load sharing, smoother body motion (less roll angle), and improved handling and stability during steering maneuvers commonly occurring in commercial trucks during their intended use.  相似文献   

5.
A variable stiffness architecture is used in the suspension system to counteract the body roll moment, thereby enhancing the roll stability of the vehicle. The variation of stiffness concept uses the ‘reciprocal actuation’ to effectively transfer energy between a vertical traditional strut and a horizontal oscillating control mass, thereby improving the energy dissipation of the overall suspension. The lateral dynamics of the system is developed using a bicycle model. The accompanying roll dynamics are also developed and validated using experimental data. The positions of the left and right control masses are sequentially allocated to reduce the effective body roll and roll rate. Simulation results show that the resulting variable stiffness suspension system has more than 50% improvement in roll response over the traditional constant stiffness counterparts. The simulation scenarios examined is the fishhook manoeuvre.  相似文献   

6.
ABSTRACT

Collision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions.  相似文献   

7.
SUMMARY

A theoretical analysis is presented to model a hydromechanical, semi-active suspension system, first as a single wheel station and then as fitted to each wheel of an off-road vehicle. Predicted results show that two benefits are obtained by comparison with the equivalent passive system. First, vehicle attitude is controlled for changes in body forces arising from static loads or braking/cornering inputs. Second, a significant improvement in ride comfort is obtained because low suspension stiffnesses can be used.  相似文献   

8.
SUMMARY

The full-car roll model of a vehicle suspension with static and dynamic control (using wheel, body and seat) is described by means of vertical and lateral input for both static and dynamic states. It is shown that the control deteriorates the static performance of the vertical response and improves the performance of the lateral response.  相似文献   

9.
SUMMARY

In this paper, an optimal suspension system is derived for a quarter-car model using multivariable integral control. The suspension system features two parts. The first part is an integral control acting on suspension deflection to ensure zero steady-sate offset due to body and maneuvering forces as well as road inputs. The second is a proportional control operating on the vehicle system states for vibration control and performance improvement. The optimal ride performance of the active suspensions based on linear full-state feedback control laws with and without integral control together with the performance of passive suspensions are compared.  相似文献   

10.
SUMMARY

A vehicle model, with 10 degrees of freedom is used to investigate the skidding conditions of any wheel of the vehicle in motion. Equations for the load transfer and equations for the pneumatic tire spring and shock absorber are derived. Parameters such as gradual cornering, U-curve cornering, the wavy road surface of different wave lengths and cases of independent and connected suspension systems are inputs to the system. The tire calculated forces and their corresponding maximum resistance forces are the outputs of the systems. A connected suspension system is found to resist skidding better than the independent suspension system. The system is non-linear, and numerical solutions are obtained.  相似文献   

11.
The design of passive suspension systems using conventional springs and dampers is limited by the need to compromise between vehicle ride and handling functions. The Interconnected Hydragas Suspension fitted to the current Rover 100 series partially allays this compromise by reducing the vehicle pitch stiffness witfiout affecting the bounce and roll stiffnesses. However, the vehicle body is still subject to roll during cornering manoeuvres. This paper outlines the development and simulation of a sealed low bandwidth active roll control suspension based on the existing Interconnected Hydragas System. Following a brief explanation of the Hydragas suspension operating principle die paper outlines the design of a fluid displacer or 'shuttle'. This shuttle enables control over body roll during manoeuvres by displacing fluid from one side of the car to the other. Care is taken to ensure low power consumption whilst the sealed nature of the fluid based suspension units guarantee reliable operation without leakage. Using computer simulation, the system performance is predicted and compared with experimental measurements. It is shown that roll during manoeuvres can be reduced or eliminated using a minimum of hydraulic components with only moderate power consumption and cost.  相似文献   

12.
SUMMARY

The computer modelling of vehicle ride and handling has been widely reported, but often only one or other of these functions is considered. This is especially true in the design of active suspension controllers, where the effects that improvements in the performance of one aspect have on the other are often not presented. This paper initially describes a combined ride and handling model for a large executive saloon fitted with a slow-active suspension. Separately derived ride and roll control strategies are combined and the effects on both ride and handling considered for straight running and various handling man?uvres on rough roads. The results are compared to the original passively suspended vehicle and the effect of running each strategy separately.  相似文献   

13.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

14.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

15.
SUMMARY

An adaptive control system of the model following type is proposed for drive motion control of a four wheel steering (4WS) car with using neural network (NN) which has mastered nonlinear friction force between tire and road surface. A model of one rigid body is adopted which represents appropriately two kinds of car motion caused by steering action, namely the lateral displacement and the yawing rotation, and an equation of motion is described in a simplified form to make a system equation for motion control possible. Nonlinear relation between the cornering force of tire and the slip angle is obtained by numerical analysis with the tire model proposed by E. Fiala, taking friction coefficient and car speed as the parameters. The result is used as the teaching signal for NN. Three NN are used in the control system composed of both the feed-forward and the feedback circuits in order to realize adaptive control. Validity and usefulness of the proposed adaptive control system with NN are verified by three kinds of computer simulation.  相似文献   

16.
Additional 4WS and Driver Interaction   总被引:1,自引:0,他引:1  
This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

17.
Active Roll Control of Single Unit Heavy Road Vehicles   总被引:5,自引:0,他引:5  
Summary Strategies are investigated for controlling active anti-roll systems in single unit heavy road vehicles, so as to maximise roll stability. The achievable roll stability improvements that can be obtained by applying active anti-roll torques to truck suspensions are discussed. Active roll control strategies are developed, based on linear quadratic controllers. It is shown that an effective controller can be designed using the LQG approach, combined with the loop transfer recovery method to ensure adequate stability margins. A roll controller is designed for a torsionally flexible single unit vehicle, and the vehicle response to steady-state and transient cornering manoeuvres is simulated. It is concluded that roll stability can be improved by between 26% and 46% depending on the manoeuvre. Handling stability is also improved significantly.  相似文献   

18.
A 7-DOF full-car model with optimal active control suspension is utilized to evaluate the vehicle dynamic performances which are achieved through proposed controllers. The optimal controller, which includes the integral action for the suspension deflection, considerably improves the attitude control of a vehicle because the rolling and pitching motion in cornering and braking maneuvers are reduced, respectively. In the viewpoint of level control, the integral control acting on the suspension deflection results in the zero steady-state deflection in response to static body forces and ramp road input. The dynamic characteristics of the suspension control system are evaluated in terms of time domain and frequency domain. The simulations in the time domain demonstrate the advantages of the active suspension system obtained by penalizing the integral and derivative of suspension deflections and the derivative of roll and pitch angles in the performance index. The frequency characteristic curves obtained by simulations regarding integral action or derivative action show the increase of both ride comfort and road-holding performances by maximizing the use of suspension deflections. The potential of derivative control is shown by the performances of the car traveling over a bump and braking.  相似文献   

19.
A 7-DOF full-car model with optimal active control suspension is utilized to evaluate the vehicle dynamic performances which are achieved through proposed controllers. The optimal controller, which includes the integral action for the suspension deflection, considerably improves the attitude control of a vehicle because the rolling and pitching motion in cornering and braking maneuvers are reduced, respectively. In the viewpoint of level control, the integral control acting on the suspension deflection results in the zero steady-state deflection in response to static body forces and ramp road input. The dynamic characteristics of the suspension control system are evaluated in terms of time domain and frequency domain. The simulations in the time domain demonstrate the advantages of the active suspension system obtained by penalizing the integral and derivative of suspension deflections and the derivative of roll and pitch angles in the performance index. The frequency characteristic curves obtained by simulations regarding integral action or derivative action show the increase of both ride comfort and road-holding performances by maximizing the use of suspension deflections. The potential of derivative control is shown by the performances of the car traveling over a bump and braking.  相似文献   

20.
Rollover mitigation for a heavy commercial vehicle   总被引:1,自引:0,他引:1  
A heavy commercial vehicle has a high probability of rollover because it is usually loaded heavily and thus has a high center of gravity. An anti-roll bar is efficient for rollover mitigation, but it can cause poor ride comfort when the roll stiffness is excessively high. Therefore, active roll control (ARC) systems have been developed to optimally control the roll state of a vehicle while maintaining ride comfort. Previously developed ARC systems have some disadvantages, such as cost, complexity, power consumption, and weight. In this study, an ARC-based rear air suspension for a heavy commercial vehicle, which does not require additional power for control, was designed and manufactured. The rollover index-based vehicle rollover mitigation control scheme was used for the ARC system. Multi-body dynamic models of the suspension subsystem and the full vehicle were used to design the rear air suspension and the ARC system. The reference rollover index was tuned through lab tests. Field tests, such as steady state cornering tests and step steer tests, demonstrated that the roll response characteristics in the steady state and transient state were improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号