首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.  相似文献   

2.
In this paper, a synthesis method for a reconfigurable fault-tolerant control system for use in a steer-by-wire vehicle is proposed. The vehicle considered in this paper is also assumed to have independently driven wheels. The control objective in this work is to enable the vehicle yaw rate to track the reference signal even when the steering actuator breaks down. Since the vehicle yaw rate can be controlled with either the front wheel turn angle or the yaw moment generated by the independently driven wheels, this system has actuator redundancy. We attempt to design a control system that manages this actuator redundancy so that the performance degradation due to the actuator failure is minimised. We utilise a control allocator based on on-line optimisation for managing the actuator redundancy. The fault-tolerant control system with a control allocator has several excellent properties. For example, the method can handle various failure situations. Also, since the control allocation problem is reduced to a convex quadratic programming problem, the on-line computational effort is relatively little. However, so far, it has been unclear whether the stability of the control system with the control allocator is guaranteed when the actuator failure occurs. Therefore, we propose a design method of a fault-tolerant controller based on on-line optimisation that guarantees the stability of the overall system. The effectiveness of the method is established through numerical examples.  相似文献   

3.
A numerical method for the time-optimal control of the race car is presented. The method is then used to perform the role of the driver in numerical simulations of manoeuvres at the limit of race car performance. The method does not attempt to model the driver but rather replaces the driver with methods normally associated with numerical optimal control. The method simultaneously finds the optimal driven line and the driver control inputs (steer, throttle and brake) to drive this line in minimum time. In principle, the method is capable of operation with arbitrarily complex vehicle models as it requires only limited access to the vehicle model state vector. It also requires solution of the differential equation representing the vehicle model in only the forward time direction and is hence capable of simulating the full vehicle transient response.  相似文献   

4.
某公司生产重卡铸钢桥壳,设计建设了一条桥壳自动传送线。桥壳热压装作业后,放入传送线专用托架小车,采用变频电机和摆线减速机提供动力,由链条带动实现桥壳传送和空小车从下方自动返回循环运行。本传送线采用了一种特别的结构方式,小车利用同一组滚轮在上下两层轨道中运行,且始终与链条相连,在传送线两端,空小车能够自动跟随传动链条作180°回转,小车滚轮自动脱离之前轨道然后进入到另一层轨道中运行。本传送线结构优化,占用空间少,经过实际生产验证反响良好。  相似文献   

5.
Traction control is a very important aspect in railway vehicle dynamics. Its optimisation allows improvement of the performance of a locomotive by working close to the limit of adhesion. On the other hand, in case the adhesion limit is surpassed, the wheels are subjected to heavy wear and there is also a big risk that vibrations in the traction occur. Similar considerations can be made in the case of braking. The development and optimisation of a traction/braking control algorithm is a complex activity, because it is usually performed on a real vehicle on the track, where many uncertainties are present due to environmental conditions and vehicle characteristics. This work shows the use of a scaled roller rig to develop and optimise a traction control algorithm on a single wheelset. Measurements performed on the wheelset are used to estimate the optimal adhesion forces by means of a wheel/rail contact algorithm executed in real time. This allows application of the optimal adhesion force.  相似文献   

6.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

7.
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives.  相似文献   

8.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

9.
Proper rail geometry in the crossing part is essential for reducing damage on the nose rail. To improve the dynamic behaviour of turnout crossings, a numerical optimisation approach to minimise rolling contact fatigue (RCF) damage and wear in the crossing panel by varying the nose rail shape is presented in the paper. The rail geometry is parameterised by defining several control cross-sections along the crossing. The dynamic vehicle–turnout interaction as a function of crossing geometry is analysed using the VI-Rail package. In formulation of the optimisation problem a combined weighted objective function is used consisting of the normal contact pressure and the energy dissipation along the crossing responsible for RCF and wear, respectively. The multi-objective optimisation problem is solved by adapting the multipoint approximation method and a number of compromised solutions have been found for various sets of weight coefficients. Dynamic behaviour of the crossing has been significantly improved after optimisations. Comparing with the reference design, the heights of the nose rail are notably increased in the beginning of the crossing; the nominal thicknesses of the nose rail are also changed. All the optimum designs work well under different track conditions.  相似文献   

10.
汽车车身柔性装焊生产线探讨   总被引:1,自引:0,他引:1  
孙威春 《汽车技术》1997,(12):21-24
阐述了建立汽车车身柔性生产线的必要性,指出了车身装焊生产线是汽车车身柔性生产的关键,从工艺设备、工装夹具、机械化输送及自动控制几个方面控制实现柔性汽车装焊生产线的措施。分析了柔性装焊生产线-车身生产发展的趋势,论证了计算机是实现柔性自动控制的核心。  相似文献   

11.
针对传统控制方式难以准确完成AGV轨迹跟踪任务这一问题,提出一种基于自适应模糊控制的轨迹跟踪方法.首先建立AGV的运动学模型,并基于李雅普诺夫第二法设计控制律.其次,以期望轨迹与实际轨迹的位姿偏差作为输入,以控制律中的比例因子作为输出,设计自适应模糊控制器.最后,使用Matlab/Simulink对设计的控制系统进行仿...  相似文献   

12.
This paper presents a methodology for improving the crossing (frog) geometry through the robust optimisation approach, wherein the variability of the design parameters within a prescribed tolerance is included in the optimisation problem. Here, the crossing geometry is defined by parameterising the B-spline represented cross-sectional shape and the longitudinal height profile of the nose rail. The dynamic performance of the crossing is evaluated considering the variation of wheel profiles and track alignment. A multipoint approximation method (MAM) is applied in solving the optimisation problem of minimising the contact pressure during the wheel–rail contact and constraining the location of wheel transition at the crossing. To clarify the difference between the robust optimisation and the normal deterministic optimisation approaches, the optimisation problems are solved in both approaches. The results show that the deterministic optimum fails under slight change of the design variables; the robust optimum, however, has improved and robust performance.  相似文献   

13.
Inspired by the optimisation design method for restoration of worn wheel profiles, an inverse design method based on optimal rail grinding profiles is presented in this paper. To improve grinding quality, vehicle dynamic performance is chosen as the main criteria and rolling radii difference function is selected as the key factor (also main target function) determining dynamic performance. Grinding material to be removed is chosen as the auxiliary target aimed at extending rail service life. Besides that, wheel–rail contact distribution is also taken into consideration as an auxiliary target preventing stress concentration and fatigue growth. By introducing certain presuppositions, all the design targets will form an inverse design problem. This problem can be solved using hybrid discrete numerical methods. Considering different grinding requirements, two examples of grinding profile design for straight and curved track will be discussed. Results show that the presented method is efficient and effective. Practical implementation has been carried out at several grinding sites in China.  相似文献   

14.
本文针对汽车的电动车窗控制电路进行了优化设计,旨在解决该控制电路在一旦汽车落水的情况下普遍突然失灵的尴尬。其优化设计思路是寻求绕开损坏的电动车窗元器件,另外启动一条抗震且密封性良好的回路,由电瓶直接驱动电动车窗升降器电机,一键降落电动车窗玻璃。新的回路由多个传感器、ECU、备用充电电源以及紧急按钮开关等组成,具有良好的抗震性和密封性。本设计在几家汽车改装店对多款中低端汽车进行了测试安装,并将汽车的电动车窗从不同高度投入水中进行实验调试,试验效果良好。  相似文献   

15.
燃料电池轿车动力系统线性二次型最优控制研究   总被引:2,自引:0,他引:2  
建立了包括燃料电池发动机、电机及其控制器、动力蓄电池组在内的燃料电池轿车动力系统的动态数学模型,根据系统的噪声特性,将动力系统线性二次型最优控制问题归结为线性二次型高斯问题,并建立了考虑随机干扰的燃料电池轿车动力系统线性二次型最优动力控制算法。离线仿真和实车转鼓试验证明,该算法能够充分考虑动力系统主要部件的动力性和经济性,具有一定的实用价值。  相似文献   

16.
Summary This paper studies the vertical vibration of a vehicle traveling on an imperfect track system. The car body and sleepers are modeled as Timoshenko beams with finite length, and the rail is assumed as an infinite Timoshenko beam with discrete supports. Imperfection of the track system comes from a sleeper lost partial support by the ballast. Since deflection of the rail is limited within a certain interval where the vehicle is passing over, the infinite domain problem can be transformed into a finite domain problem with moving boundary. In this work, the equations of motion of the car body, rail and sleepers are discretized first by the finite element method. The discretized equations of motion for the vehicle and track systems are then assembled, respectively. Finally, the Newmark method is applied to obtain the response of the vehicle and track systems at each time step. The effect of the vehicle speed on the response of the vehicle and track systems is investigated.  相似文献   

17.
Linear matrix inequality (LMI) methods, novel techniques in solving optimisation problems, were introduced as a unified approach for vehicle's active suspension system controller design. LMI methods were used to provide improved and computationally efficient controller design techniques. The active suspension problem was formulated as a standard convex optimisation problem involving LMI constraints that can be solved efficiently using recently developed interior point optimisation methods. An LMI based controller for a vehicle system was developed. The controller design process involved setting up an optimisation problem with matrix inequality constraints. These LMI constraints were derived for a vehicle suspension system. The resulting LMI controller was then tested on a quarter-car model using computer simulations. The LMI controller results were compared with an optimal PID controller design solution. The LMI controller was further tested by incorporating a nonlinear term in the vehicle's suspension model; the LMI's controller degraded response was enhanced by using gain-scheduling techniques. The LMI controller with gain-scheduling gave good results in spite of the unmodelled dynamics in the suspension system, which was triggered by large deflections due to off-road driving.  相似文献   

18.
There is currently a strongly growing interest in obtaining optimal control solutions for vehicle manoeuvres, both in order to understand optimal vehicle behaviour and, perhaps more importantly, to devise improved safety systems, either by direct deployment of the solutions or by including mimicked driving techniques of professional drivers. However, it is non-trivial to find the right combination of models, optimisation criteria, and optimisation tools to get useful results for the above purposes. Here, a platform for investigation of these aspects is developed based on a state-of-the-art optimisation tool together with adoption of existing vehicle chassis and tyre models. A minimum-time optimisation criterion is chosen for the purpose of gaining an insight into at-the-limit manoeuvres, with the overall aim of finding improved fundamental principles for future active safety systems. The proposed method to trajectory generation is evaluated in time-manoeuvres using vehicle models established in the literature. We determine the optimal control solutions for three manoeuvres using tyre and chassis models of different complexities. The results are extensively analysed and discussed. Our main conclusion is that the tyre model has a fundamental influence on the resulting control inputs. Also, for some combinations of chassis and tyre models, inherently different behaviour is obtained. However, certain variables important in vehicle safety-systems, such as the yaw moment and the body-slip angle, are similar for several of the considered model configurations in aggressive manoeuvring situations.  相似文献   

19.
Vertical track irregularities over viaducts in high-speed rail systems could be possibly caused by concrete creep if pre-stressed concrete bridges are used. For bridge spans that are almost uniformly distributed, track irregularity exhibits a near-regular wave profile that excites car bodies as a high-speed train moves over the bridge system. A long-wavelength irregularity induces low-frequency excitation that may be close to the natural frequencies of the train suspension system, thereby causing significant vibration of the car body. This paper investigates the relationship between the levels of car vibration, bridge vibration, track irregularity, and the train speed. First, this study investigates the vibration levels of a high-speed train and bridge system using 3D finite-element (FE) transient dynamic analysis, before and after adjustment of vertical track irregularities by means of installing shimming plates under rail pads. The analysis models are validated by in situ measurements and on-board measurement. Parametric studies of car body vibration and bridge vibration under three different levels of track irregularity at five train speeds and over two bridge span lengths are conducted using the FE model. Finally, a discontinuous shimming pattern is proposed to avoid vehicle suspension resonance.  相似文献   

20.
Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are optimal for the track, the maximum operational velocity is increased while the safety and ride quality measures of the vehicle, as defined by homologation standards, are either maintained in acceptable values or improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号