首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a novel sliding mode controller (SMC) and its application in the lateral stability control of a 4-wheel independent drive electric vehicle. The structure of the SMC is modified and online-tuned to ensure vehicle system stability, and to track the desired vehicle motion references when an in-wheel motor fault happens. The proposed controller is faster, more accurate, more robust, and with smaller chattering than common SMCs chatter. The effectiveness of the introduced approach is investigated through conducted simulations in the CARSIM and MATLAB software environments.  相似文献   

2.
It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data.  相似文献   

3.
The fast-paced, iterative, vehicle design environment demands efficiency when simulating suspension loads. Towards that end, a computationally efficient, linear, planar, quasi-static tyre model is developed in this work that accurately predicts a tyre's lower frequency, reasonably large amplitude, nonlinear stiffness relationship. The axisymmetric, circumferentially isotropic, stiffness equation is discretised into segments, then parameterised by a single stiffness parameter and two shape parameters. The tyre's deformed shape is independent of the overall tyre stiffness and the forces acting on the tyre. Constraint modes capture enveloping and bridging properties and a recursive method yields the set of active constraints at the tyre–road interface. The nonlinear stiffness of a tyre is captured by enforcing unidirectional geometric boundary conditions. The model parameters are identified semi-empirically; simulated cleat test loads match experiments within 7% including nonlinear stiffness when simulating a flat plate test and a discontinuous stiffness when simulating a cleat test.  相似文献   

4.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

5.
提出了一种用于ABS滑移率控制的滑模变结构控制方法,通过将实际滑移率与参考滑移率作比较,形成滑动面,追踪参考滑移率来使ABS系统处于制动的最佳区域。并且采用了饱和函数来削弱变结构带来的颤抖现象,经仿真表明,该方法在ABS的滑移率控制中是切实有效的。  相似文献   

6.
A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability.  相似文献   

7.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

8.
Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehicle handling and passenger safety. This study introduces observers that estimate lateral load transfer and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is based on the dynamic response of a vehicle instrumented with cheap and currently available standard sensors. The estimation process is separated into three blocks: the first block serves to identify the vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll angle and the one-side lateral transfer load, while in the third block we compare linear and nonlinear models for the estimation of four wheel vertical forces. The different observers are based on a prediction/estimation filter. The performance of this concept is tested and compared with real experimental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate the ability of this approach to provide accurate estimation, thus showing its potential as a practical low-cost solution for calculating normal forces.  相似文献   

9.
Advanced empirical, and physical-based tyre models have proven to be accurate for simulating tyre dynamics; however, these tyre models typically require expensive and intensive tyre parameterisation. Recent research into wheeled unmanned ground vehicles requiring vertical force analysis has shown good results using a simple linear spring model for the tyre which demonstrate the continued use for simple tyre models; however, parameterisation of the tyre still remains a challenge when load test equipment is not available. This paper presents a cost-effective tyre vertical stiffness parameterisation procedure using only measured tyre geometry and air pressure for applications where high-fidelity tyre models are unnecessary. Vertical forces calculated through an air volume optimisation approach are used to estimate tyre vertical stiffness. Nine tyres from the literature are compared to evaluate the performance of the vertical force estimation and stiffness parameterisation algorithms. Experimental results on a pair of ATV tyres are also presented.  相似文献   

10.
Current research on electric vehicles (EVs) is focusing on the environment and energy aspects. However, electric motors also have much better control performance than conventional internal combustion engines. EVs could not only be ‘cleaner’ and ‘more energy efficient’, but also become ‘safer’ with ‘better driving performance’. In this paper, a discrete elasto-plastic friction model is proposed for a dynamic emulation of road/tyre friction in order to validate the control design of EV control systems in laboratory facilities. Experimental results show the dynamic emulation is able to capture the transient behaviour of the road/tyre friction force during braking and acceleration, therefore enabling a more reliable validation of various EV control methods. And the computation of inverse dynamics, which usually needs to be considered in conventional emulation approaches, can be avoided using the proposed dynamic friction model.  相似文献   

11.
ABSTRACT

Most modern day automotive chassis control systems employ a feedback control structure. Therefore, real-time estimates of the vehicle dynamic states and tire-road contact parameters are invaluable for enhancing the performance of vehicle control systems, such as anti-lock brake system (ABS) and electronic stability program (ESP). Today's production vehicles are equipped with onboard sensors (e.g. a 3-axis accelerometer, 3-axis gyroscope, steering wheel angle sensor, and wheel speed sensors), which when used in conjunction with certain model-based or kinematics-based observers can be used to identify relevant tire and vehicle states for optimal control of comfort, stability and handling. Vehicle state estimation is becoming ever more relevant with the increased sophistication of chassis control systems. This paper presents a comprehensive overview of the state-of-the-art in the field of vehicle and tire state estimation. It is expected to serve as a resource for researchers interested in developing vehicle state estimation algorithms for usage in advanced vehicle control and safety systems.  相似文献   

12.
A traction control system (TCS) for two-wheel-drive vehicles can conveniently be realised by means of slip control. Such a TCS is modified in this paper in order to be applicable to four-wheel-drive vehicles and anti-lock braking systems, where slip information is not readily available. A reference vehicle model is used to estimate the vehicle velocity. The reference model is excited by a saw-tooth signal in order to adapt the slip for maximum tyre traction performance. The model-based TCS is made robust to vehicle modelling errors by extending it with (i) a superimposed loop of tyre static curve gradient control or (ii) a robust switching controller based on a bi-directional saw-tooth excitation signal. The proposed traction control strategies are verified by experiments and computer simulations.  相似文献   

13.
陈浩  袁良信  孙涛  郑四发  连小珉 《汽车工程》2020,42(2):199-205,256
针对电动轮汽车车速与道路坡度估计问题,本文中基于纵向非线性动力学方程设计1阶扩张状态观测器对车速与坡度进行联合估计,分析了估计稳态误差;同时,采用带遗忘因子的递归最小二乘估计算法分离加速度传感器信号中的坡度信息,并设置了比例系数来融合两类坡度信息,最终得到道路坡度估计值。搭建MATLAB/Simulink-Carsim联合仿真平台进行变坡度路面仿真,并在实际坡道路面完成实车测试。仿真与试验结果表明,所提出的方法简单、可行。  相似文献   

14.
15.
为降低轮毂电机转矩脉动对电动汽车平顺性的影响,提出了开关磁阻电机的控制策略。建立了电机的非线性模型,对电机进行了最优角度控制。针对电机转矩脉动问题,首先在直接转矩分配控制基础上,采用模糊算法对传统PID控制器的参数进行在线整定,其次提出将快速终端滑模控制算法与直接转矩分配相结合的控制策略。仿真结果表明,模糊算法的引入提高了系统的稳定性;而快速终端滑模控制算法不仅提高了系统抗干扰的能力,而且降低了电机的转矩脉动。  相似文献   

16.
Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.  相似文献   

17.
Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.  相似文献   

18.
为精准模拟传动系弹性及齿隙作用下电制动系统非线性机械负载,提出了自适应模糊滑模自抗扰的测功机控制算法。首先,针对一款前驱电动汽车,建立融合感应电机模型的车辆及台架机电一体化模型,引入典型正常制动和防抱死制动控制作为测试对象。其次,构建扩张状态观测器估计台架系统未建模动态,以自适应模糊滑模控制测功机实时模拟高度非线性机械负载。最后,开展了制动控制策略台架测试的仿真研究。结果表明:提出的方法可精确模拟电制动系统动态负载,有效提高制动控制算法台架测试精度。  相似文献   

19.
基于LO-EKF算法的分布驱动电动汽车状态估计的研究   总被引:2,自引:0,他引:2  
本文中对分布式驱动电动汽车的状态估计进行研究。首先利用龙伯格状态观测器实时观测对车辆的状态估计影响较大的路面坡度,接着,提出了采用扩展卡尔曼滤波算法,以车辆ESP传感器所获取的数据信息作为观测值,对分布式驱动电动汽车的动力学状态变量进行估计。最后进行Carsim和MATLAB联合仿真。结果表明,基于扩展卡尔曼滤波和龙伯格观测器的车辆状态估计算法能较好的估算出车辆的相关动力学状态值,算法可行,收敛速度较快。  相似文献   

20.
In recent years, the driver's active assistances have become important features in commercialised vehicles. In this paper, we present one of these features which consists of an advanced driver assistance system for lane keeping. A thorough analysis of its performance and stability with respect to variations in driver behaviour will be given. Firstly, the lateral control model based on visual preview is established and the kinematics model based on visual preview, including speed and other factors, is used to calculate the lateral error and direction error. Secondly, and according to the characteristics of the lateral control, an efficient strategy of intelligent electric vehicle lateral mode is proposed. The integration of the vehicle current lateral error and direction error is chosen as the parameter of the sliding mode switching function to design the sliding surface. The control variables are adjusted according to the fuzzy control rules to ensure that they meet the existence and reaching condition. A new fuzzy logic-based switching strategy with an efficient control law is also proposed to ensure a level of continuous and variable sharing according to the state of the driver and the vehicle positioning on the roadway. The proposed control law acts either at the centre of the lane, as a lane keeping assistance system to reduce the driver's workload for long trips, or as a lane departure avoidance system that intervenes for unintended lane departures. Simulation results are included in this paper to explain this concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号