首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   

2.
A vehicle model incorporating front and rear wheel suspensions and seat suspension is presented. The suspension control includes algorithms to provide both dynamic and steady state (levelling) control. Vehicle response to (a) vertical inputs due to ground disturbances at the wheels and (b) longitudinal inputs due to the inertial forces during braking and accelerating, are investigated. It is shown that the static (self-levelling) control causes a slight deterioration in dynamic performance. The active ride control produces improvements of ride comfort under dynamic conditions compared to an equivalent passively suspended vehicle. In steady state the proposed control eliminates the error heave of the body caused by tilting of the vehicle with active suspension.  相似文献   

3.
Passive suspensions are designed to dissipate the energy otherwise transferred to a vehicle's body through interactions with a roadway or terrain. A bond graph representation of an independent suspension design was developed to study the energy flow through a vehicle. The bond graph model was tuned and validated through experimental tests and was found to produce suitable results. Examining the bond graph reveals that the dissipated energy associated with vertical and transverse coordinates generally originates from the longitudinal motion of the vehicle and is transferred through the tire-ground contact patch. Additionally, since the longitudinal energy originates from the vehicle's engine, the energy dissipated via the suspension shock absorber as well as other components (e.g., mechanical joints, etc.) essentially dissipate some engine energy. The plots presented in the paper support this theory by showing that upon traveling a rough terrain, the vehicle's longitudinal velocity drops more when vertical vibrations increase. Results show that a vehicle equipped with a passive suspension experiences a larger velocity drop compared to one with an active suspension traversing the same rough terrain. The paper compares the results of simulation of an analytical bond graph model of an active suspension system with experimental results and finds good agreement between the two. Other simulations show that relative to passive suspensions, not only do active suspensions yield substantial improvement in ride quality, they can also result in substantial energy savings. This paper concludes that if electromechanical actuators are supplemented by passive springs to support the vehicle static weight, the amount of energy required for operation of actuators is significantly less than the amount dissipated by conventional shock absorbers.  相似文献   

4.
Passive suspensions are designed to dissipate the energy otherwise transferred to a vehicle's body through interactions with a roadway or terrain. A bond graph representation of an independent suspension design was developed to study the energy flow through a vehicle. The bond graph model was tuned and validated through experimental tests and was found to produce suitable results. Examining the bond graph reveals that the dissipated energy associated with vertical and transverse coordinates generally originates from the longitudinal motion of the vehicle and is transferred through the tire-ground contact patch. Additionally, since the longitudinal energy originates from the vehicle's engine, the energy dissipated via the suspension shock absorber as well as other components (e.g., mechanical joints, etc.) essentially dissipate some engine energy. The plots presented in the paper support this theory by showing that upon traveling a rough terrain, the vehicle's longitudinal velocity drops more when vertical vibrations increase. Results show that a vehicle equipped with a passive suspension experiences a larger velocity drop compared to one with an active suspension traversing the same rough terrain. The paper compares the results of simulation of an analytical bond graph model of an active suspension system with experimental results and finds good agreement between the two. Other simulations show that relative to passive suspensions, not only do active suspensions yield substantial improvement in ride quality, they can also result in substantial energy savings. This paper concludes that if electromechanical actuators are supplemented by passive springs to support the vehicle static weight, the amount of energy required for operation of actuators is significantly less than the amount dissipated by conventional shock absorbers.  相似文献   

5.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

6.
A theoretical analysis is presented to model a hydromechanical, semi-active suspension system, first as a single wheel station and then as fitted to each wheel of an off-road vehicle. Predicted results show that two benefits are obtained by comparison with the equivalent passive system. First, vehicle attitude is controlled for changes in body forces arising from static loads or braking/cornering inputs. Second, a significant improvement in ride comfort is obtained because low suspension stiffnesses can be used.  相似文献   

7.
In this paper, an analytical model with suitable vehicle parameters, together with a multi-body model is proposed to predict steering returnability in low-speed cornering with what is expected to be adequate precision as the steering wheel moves from lock to lock. This model shows how the steering response can be interpreted in terms of vertical force, lateral force with aligning moment, and longitudinal force. The simulation results show that vertical steering rack forces increase in the restoring direction according to steering rack displacement for both the inner and outer wheels. As lateral forces due to side-slip angle are directed toward the medial plane of the vehicle in both wheels, the outer wheel pushes the steering wheel in the returning direction while the inner wheel does not. In order to improve steering returnability, it is possible to increase the total steering rack force in both road wheels through adjustments to the kingpin axis and steering angle. This approach is useful for setting up a proper suspension geometry during conceptual chassis design.  相似文献   

8.
The ride dynamic characteristics of a novel torsio-elastic suspension for off-road vehicle applications are investigated through field measurements and simulations. A prototype suspension was realised and integrated within the rear axle of a forestry skidder for field evaluations. Field measurements were performed on forestry terrains at a constant forward speed of 5 km/h under the loaded and unloaded conditions, and the ride responses were acquired in terms of accelerations along the vertical, lateral, roll, longitudinal and pitch axes. The measurements were also performed on a conventional skidder to investigate the relative ride performance potentials of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in magnitudes of transmitted vibration to the operator seat. Compared with the unsuspended vehicle, the prototype suspended vehicle resulted in nearly 35%, 43% and 57% reductions in the frequency-weighted rms accelerations along the x-, y- and z-axis, respectively. A 13-degree-of-freedom ride dynamic model of the vehicle with rear-axle torsio-elastic suspension was subsequently derived and validated in order to study the sensitivity of the ride responses to suspension parameters. Optimal suspension parameters were identified using the Pareto technique based on the genetic algorithm to obtain minimal un-weighted and frequency-weighted rms acceleration responses. The optimal solutions resulted in further reduction in the pitch acceleration in the order of 20%, while the reductions in roll and vertical accelerations ranged from 3.5 to 6%.  相似文献   

9.
汽车主动悬架的单神经元自适应控制   总被引:2,自引:0,他引:2  
金耀  于德介  宋晓琳 《汽车工程》2006,28(10):933-936
在1/4汽车动力学模型的基础上,设计了汽车主动悬架的自适应神经元控制器。以车辆的行驶平顺性为主要控制目标,车身垂直加速度、悬架动挠度、车轮动位移为具体评价参数,研究了系统在随机路面激励条件下的时域响应,计算了振动响应的均方根值,考察了在变参数条件下控制器的鲁棒性。仿真结果表明,该控制器能有效改善车辆的综合性能,尤其是平顺性和舒适性,并且具有较好的鲁棒性,对模型参数的变化有一定的适应性。  相似文献   

10.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   

11.
来飞  邓兆祥  董红亮 《汽车工程》2007,29(3):238-242
通过对车辆底盘系统中的转向和悬架系统建立统一的数学模型,利用M atlab/S imu link仿真,结合最优控制理论,分别对被动悬架兼前轮转向系统与主动悬架兼四轮转向综合控制系统进行了对比研究。理论分析与仿真试验表明,综合控制系统下车辆的操纵稳定性和平顺性都得到了很大的提高。  相似文献   

12.
In magnetically levitated (Maglev) transportation systems, especially in electromagnetic suspension system (EMS) type Maglev systems, highly accurate prediction of ride quality is very important in order to reasonably relax guideway construction tolerances or constraints and stiffness while meeting the specification for ride comfort, thereby reducing guideway construction and maintenance costs. A full vehicle multi-body dynamic model is proposed, to facilitate a rigorous ride quality prediction of an EMS-type Maglev vehicle. Using the more realistic dynamic model proposed in this paper, the effects of guideway deflection limits, surface roughness, and levitation control system parameters on ride quality are studied numerically. The results obtained from the simulation studies are then used to facilitate a discussion of the trade-off between guideway smoothness and vehicle suspension. It can be expected that these studies could suggest cost-effective specifications for guideway construction tolerances and stiffness and EMS.  相似文献   

13.
Nonlinear Backstepping Active Suspension Design Applied to a Half-Car Model   总被引:1,自引:0,他引:1  
A fresh nonlinear backstepping design scheme, which is developed for the control of half-car active suspension systems to improve the inherent tradeoff between ride quality and suspension travel, is proposed in this paper. Since ride quality is dependent on a combination of vertical and angular displacements of a vehicle body, the design of active suspensions must have the potential to minimize heave and pitch movements in order to guarantee the ride comfort of passengers. The other important factor to be emphasized in the design of active suspensions is the suspension travel which means the space variation between the car body and the tires. In order to avoid damaging vehicle components and generating more passenger discomfort, the active suspension controllers must be capable of preventing the suspension from hitting its travel limits. Our design strategy, with two intentionally additional nonlinear filters, shows the potential to achieve these conflicting control objectives. The novelty of our active suspension design is in the use of two particular nonlinear filters at both the front and rear wheels. The effective bandwidths of these two nonlinear filters depend on the magnitudes of the front and rear suspension travels, individually. When suspension travel is small, the proposed controllers soften the suspension for enhancing passenger comfort. However, our control design shifts its attention to rattlespace utilization by stiffening the suspension when suspension travel approaches its limits. As a result, the improvement of tradeoff between ride quality and suspension travel can be guaranteed and is then demonstrated through comparative simulations.  相似文献   

14.
SUMMARY

A theoretical analysis is presented to model a hydromechanical, semi-active suspension system, first as a single wheel station and then as fitted to each wheel of an off-road vehicle. Predicted results show that two benefits are obtained by comparison with the equivalent passive system. First, vehicle attitude is controlled for changes in body forces arising from static loads or braking/cornering inputs. Second, a significant improvement in ride comfort is obtained because low suspension stiffnesses can be used.  相似文献   

15.
为解决轮边驱动电动车安全性和平顺性低的问题,文章以基于吸振原理的轮边驱动电动车垂向3自由度系统为例,运用机械振动学原理建立动力学微分方程,采用状态空间法将此系统的微分方程转化为便于Matlab/Simulink软件仿真的模型。通过分析和仿真可以直接获得轮边驱动电动车沿垂直地面方向的运动曲线图,在正弦激励作用下,动力吸振器、车轮及车身均作周期性运动。将机械振动学和Simulink软件相结合能够准确方便地对轮边驱动电动车的振动进行分析与仿真,为处理类似的汽车振动系统仿真提供了参考。  相似文献   

16.
This paper presents vibration control of a tracked vehicle installed with electro-rheological suspension units (ERSU). As a first step, an in-arm type ERSU is designed, and its spring and damping characteristics are evaluated with respect to the intensity of electric fields. Subsequently, a 16 degree-of-freedom model for a tracked vehicle equipped with the proposed ERSU is established followed by the formulation of a neuro-fuzzy controller. This controller takes account for both ride quality and steering stability by adopting a weighting parameter between two performance requirements. The parameter is appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the vertical speed of the body and the rotational angular speed of the wheel. Control performances to isolate unwanted vibration from bump and random road excitations are evaluated through computer simulations. In addition, maximum speed of the vehicle with 6 Watt power absorption is investigated with respect to the road roughness.  相似文献   

17.
This paper presents vibration control of a tracked vehicle installed with electro-rheological suspension units (ERSU). As a first step, an in-arm type ERSU is designed, and its spring and damping characteristics are evaluated with respect to the intensity of electric fields. Subsequently, a 16 degree-of-freedom model for a tracked vehicle equipped with the proposed ERSU is established followed by the formulation of a neuro-fuzzy controller. This controller takes account for both ride quality and steering stability by adopting a weighting parameter between two performance requirements. The parameter is appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the vertical speed of the body and the rotational angular speed of the wheel. Control performances to isolate unwanted vibration from bump and random road excitations are evaluated through computer simulations. In addition, maximum speed of the vehicle with 6 Watt power absorption is investigated with respect to the road roughness.  相似文献   

18.
Tractor ride vibration levels have been measured when operating with and without a two wheel (2W) unbalanced and a four wheel (4W) balanced trailer. Measurements were made in the vertical, pitch, longitudinal and roll directions with the trailers unladen and laden over four typical farm surfaces

The results showed that tractor ride vibration levels were usually increased in all directions-particularly the longitudinal direction- when operating with the laden trailers. But for the unladen trailers, they were increased only in the longitudinal direction. Predominant tractor frequencies tended to be lower with the trailers attached, and coupling between the tractor longitudinal, vertical, roll and pitch co-ordinates was generally increased

Comparisons of the results with the trends predicted by a simplified theoretical model of a tractor and 2W trailer, suggested that the model should be extended to include, (a) the roll direction, (b) more realistic ground inputs, and (c) a 4W trailer  相似文献   

19.
Suspensions play a crucial role in vehicle comfort and handling. Different types of suspensions have been proposed to address essential comfort and handling requirements of vehicles. The conventional air suspension systems use a single flexible rubber airbag to transfer the chassis load to the wheels. In this type of air suspensions, the chassis height can be controlled by further inflating the airbag; however, the suspension stiffness is not controllable, and it depends on the airbag volume and chassis load. A recent development in a new air suspension includes two air chambers (rubber airbags), allowing independent ride height and stiffness tuning. In this air suspension system, stiffness and ride height of the vehicle can be simultaneously altered for different driving conditions by controlling the air pressure in the two air chambers. This allows the vehicle’s natural frequency and height to be adjusted according to the load and road conditions. This article discusses optimization of an air suspension design with ride height and stiffness tuning. An analytical formulation is developed to yield the optimum design of the new air suspension system. Experimental results verify the mathematical modeling and show the advantages of the new air suspension system.  相似文献   

20.
目前最常用的电动轮--轮毂电机驱动型电动轮是在电动轮内安装轮毂电机,这将增加电动车的簧下质量,从而降低悬架响应的敏感度;汽车重心发生改变,汽车转向定位参数、制动滑移率的控制参数等都会发生改变,对车辆的平顺性和乘坐舒适性带来不利的影响。针对这些问题,文章设计出驱动-转向一体化的电动轮,将轮毂电机、轮内悬架、转向电机、电机悬挂装置和轮毂集成在车轮上,有效提高电动轮汽车的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号