首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel–roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel–rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel–roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.  相似文献   

2.
A 3-D explicit finite element model is developed to investigate the transient wheel–rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle–track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.  相似文献   

3.
Wheel set flange derailment criteria for railway vehicles are derived and the influence of wheel–rail contact parameters is studied. An indirect method for wheel–rail force measurement based on these derailment evaluation criteria is proposed. Laboratory tests for the calibration of strain–force devices on the bearing box are carried out to determine the relationship between the applied force and the measured strain. The simulation package, SIMPACK, is used to develop a passenger car model to generate wheel–rail forces and vibration signals. Different cases are considered in this model to provide an accurate validation of the identified wheel–rail forces. A feasibility test is conducted in the Beijing Loop test line using a passenger car equipped with a set of strain gauges on the wheel set. The comparison of the force time history applied to the instrumented wheel set and that obtained using the indirect method is presented.  相似文献   

4.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29–58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel–rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887–900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

5.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

6.
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel–rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive–track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive–track dynamics system via the wheel–rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel–rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel–rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.  相似文献   

7.
This paper presents the results of an experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Tests were carried out under quasi-steady-state conditions, on a full-scale roller rig, and allowed to point out the effect of different parameters like the wheelset's angle of attack and the ratio between the vertical loads acting on the flanging and non-flanging wheels. On the basis of the test results, some existing derailment criteria are analysed in this paper and two new criteria are proposed. A model of wheel–rail contact is proposed for the mathematical modelling of the flange climb process, and numerical vs. experimental comparisons are used to obtain model validation.  相似文献   

8.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29-58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel-rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887-900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

9.
Traction control is a very important aspect in railway vehicle dynamics. Its optimisation allows improvement of the performance of a locomotive by working close to the limit of adhesion. On the other hand, in case the adhesion limit is surpassed, the wheels are subjected to heavy wear and there is also a big risk that vibrations in the traction occur. Similar considerations can be made in the case of braking. The development and optimisation of a traction/braking control algorithm is a complex activity, because it is usually performed on a real vehicle on the track, where many uncertainties are present due to environmental conditions and vehicle characteristics. This work shows the use of a scaled roller rig to develop and optimise a traction control algorithm on a single wheelset. Measurements performed on the wheelset are used to estimate the optimal adhesion forces by means of a wheel/rail contact algorithm executed in real time. This allows application of the optimal adhesion force.  相似文献   

10.
准确分析滑移门系统的动力学特性,对车用滑移门的工程开发具有重要意义。文章基于仿形门试验台进行滚轮力试验测量,采用联合仿真的DOE方法,对滑移门动力学模型中的滚轮导轨接触模型进行两因素、多水平组合寻优,获取满足滚轮力误差要求的最优接触力参数组合,并对滑移门动力学模型进行开启、关闭的仿真分析。研究表明,基于此方法建立的滑移门动力学模型具有较高的分析精度,中导轨前导向轮峰值力最大误差为7.52%,能够准确地模拟滑移门的滑动过程;0 °导轨滚轮力比带倾角的滚轮力显著增大,与试验现象完全一致。文章所建立的仿形门试验、动力学建模、参数识别以及动力学分析等流程,可支持滑移门多参数影响分析和平顺性评估,为滑移门正向开发提供有效的理论分析依据。  相似文献   

11.
Damage to the surface of railway wheels and rails commonly occurs in most railways. If not detected, it can result in the rapid deterioration and possible failure of rolling stock and infrastructure components causing higher maintenance costs. This paper presents an investigation into the modelling and simulation of wheel-flat and rail surface defects. A simplified mathematical model was developed and a series of experiments were carried out on a roller rig. The time–frequency analysis is a useful tool for identifying the content of a signal in the frequency domain without losing information about its time domain characteristics. Because of this, it is widely used for dynamic system analysis and condition monitoring and has been used in this paper for the detection of wheel flats and rail surface defects. Three commonly used time–frequency analysis techniques: Short-Time Fourier Transform, Wigner–Ville transform and wavelet transform were investigated in this work.  相似文献   

12.
13.
Summary A theoretical model is developed to explore the high frequency wheel/rail interaction with coupling between the vertical and lateral directions. This coupling is introduced through the track dynamics due to the offset of the wheel/rail contact point from the rail centre line. Equivalent models of the railway track in the time domain are developed according to the rail vibration receptances in the frequency domain. The wheel is represented by a mass in each direction with no vertical-lateral coupling. The vertical wheel/rail interaction is generated through a non-linear Hertzian contact stiffness, allowing for the possibility of loss of contact between the wheel and rail. The lateral interaction is represented by a contact spring and a creep force damper in series and their values depend on the vertical contact force. The vibration source is the roughness on the wheel and rail contact surfaces which forms a relative displacement excitation in the vertical direction. Using the combined interaction model with this relative displacement excitation, the wheel/rail interactions with coupling between the vertical and lateral vibrations are simulated. It is found that the lateral interaction force caused by the offset is usually less than thirty percent of the vertical dynamic force. The lateral vibration of the rail is significantly reduced due to the presence of the lateral coupling, whereas the vertical interaction is almost unaffected by the lateral force.  相似文献   

14.
This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel–rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik–Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.  相似文献   

15.
Behaviour of the Normal Contact Force Under Multiple Wheel/Rail Interaction   总被引:1,自引:0,他引:1  
The wheel/rail contact forces are calculated in the frequency domain using a track model with multiple wheels on the rail. The effects of the wave reflections between the wheels on the contact force are studied. Different pad stiffnesses are used in the calculations to investigate the influence on the contact force. It is shown that the contact force can have up to four main peaks in the frequency region 550-1200?Hz due to the wave reflections between the wheels, so that the wavelengths of short pitch corrugation can be expected to be associated with multiple frequencies. As a conclusion, it is recommended that in a model for predicting short pitch corrugation the effects of multiple wheel/rail interactions need to be included.  相似文献   

16.
Movement of railway vehicles generates mechanical vibrations of a wide range of frequency. Depending on track materials, dissipation in form of viscous and hysteretic damping is present, and stiffness depends on strain-rate. In a previous paper (Castellani et al., 1998), a mathematical model to describe track materials has been developed in the frequency domain. The present paper applies this model, and attempts an analytical formulation of vehicle-track and soil interaction in the frequency domain. Rail vibrations during the passage of a vehicle are generated by three families of forces: a) the weight of the moving vehicle, b) the inertial reaction of the vehicle under the effect of corrugations over an undeformable rail, and, c) the vehicle inertial forces due to displacements of the rail. The first two groups of forces do not depend on the rail displacement, and the related mathematical formulation is a simple problem of forces at a mobile point of application. Formulation of the vehicle inertial forces, related to the rail vibration, requires reference to the acceleration of the rail, as seen by an observer in motion with the vehicle itself. Moreover, it is necessary to express the equilibrium equation of two dynamic systems, the vehicle and the track, at a the movable point of contact. There is no straight numerical procedure to solve this equation in the frequency domain. In the paper two theoretical propositions (Fryba, 1988; Grassie et al., 1982) are revisited with reference to the effect of the transit of a single wheel. Fryba infers that, in the absence of corrugations, the forces c) are null. Grassie et al. (1982) present a mathematical formulation of the interaction between wheel and rail, at mobile point of contact. At each position, the interaction force is of impulsive type. They presume that for a corrugation of harmonic type, of wavelength ?, the wheel is subject to a harmonic motion, of the frequency f = V/?, where V is the wheel velocity. All other frequency components, due to the impulse, are disregarded. Both these assumptions are shown to be inconsistent from a theoretical point of view, however they suggest suitable approaches to the solution.  相似文献   

17.
Based on the theory of vehicle-track coupling dynamics, a new wheel/rail spatially dynamic coupling model is established in this paper. In consideration of rail lateral, vertical and torsion vibrations and track irregularities, the wheel/rail contact geometry, the wheel/rail normal contact force and the wheel/rail tangential creep force are solved in detail. In the new wheel/rail model, the assumption that wheel contacts rail rigidly and wheel always contacts rail is eliminated. Finally, by numeric simulation comparison with international well-known software NUCARS, comparison with vehicle-track vertical coupling model, and comparison with running test results by China Academy of Railway Sciences, the new wheel/rail spatially dynamic coupling model is shown to be correct and effective.  相似文献   

18.
Based on the theory of vehicle-track coupling dynamics, a new wheel/rail spatially dynamic coupling model is established in this paper. In consideration of rail lateral, vertical and torsion vibrations and track irregularities, the wheel/rail contact geometry, the wheel/rail normal contact force and the wheel/rail tangential creep force are solved in detail. In the new wheel/rail model, the assumption that wheel contacts rail rigidly and wheel always contacts rail is eliminated. Finally, by numeric simulation comparison with international well-known software NUCARS, comparison with vehicle-track vertical coupling model, and comparison with running test results by China Academy of Railway Sciences, the new wheel/rail spatially dynamic coupling model is shown to be correct and effective.  相似文献   

19.
In this paper a type of contact between two bodies is considered, which leads to the formation of two separate contact zones. The contact zones considered are Hertzian ellipses if the distance between them is large. When the distance between the zones is finite it is necessary to take into account the elastic cross-influence of the two zones. In this paper an approximate method is proposed which allows the determination of the actual contact zones as Hertz's ellipses but without disregarding the cross-influence. Numerical results are presented for two, two-humped bodies pressed against each other and for steady state rolling of a flanged wheel along a steel rail.

It is shown that neglecting the cross influence for a flanged wheel leads to a negligible error in the contact forces but the forces are transmitted between wheel and rail through contact patches which are generally more slender than with the cross-influence neglected.  相似文献   

20.
The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992–1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7–22] adapting his previously published algorithm [Polach O. A fast wheel–rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728–739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1–13]. However, the Fastsim code has some limitations which do not allow modelling the creep force – creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号