首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to minimize accidents and achieve comfortable handling it is necessary to analyse the control behaviour of the driver-vehicle system and adapt the vehicle to the driver. However, most of the tests have shown, that under normal driving conditions the driver adapts himself to the vehicle, which is exactly the other way round as it was originally thought. In this paper it would be shown, how the driver adapts himself to the vehicle and which technical parameters may effect this adaptation.  相似文献   

2.
Abstract

Instead of writing equations which when solved yield the response of a vehicle to an input such as the front wheel steer angle, one can often invert the equations so that a response quantity is specified as an input and a new set of equations is solved yielding the steer angle required as an output. Using these equations one can discover the input steer angle a driver would need to impose in order to accomplish a specific maneuver for various vehicles.

It is shown that there are many possible inverse equation sets and that the eigenvalues of the inverse equations are hard to interpret since they may have little to do with the vehicle parameters. The linear single-input single-output case is studied first to fix ideas using a simple example. For the bicycle model vehicle, it is shown that any vehicle may have unstable inverse equations depending upon the response quantity used. Extensions to nonlinear and multiple-input multiple output systems are discussed.  相似文献   

3.
SUMMARY

Different load or tires and a drive on an ice-coated road can overcharge a driver to such an extend, that the result may be an accident. Therefore the aim of development is a self-acting compensation of the vehicle to different vehicle transfer behaviour (invariant vehicle behaviour).

The calculation of so called optimal characteristics shows, that only rear-wheel steering cannot realize this aim of development. Therefore an additional front-wheel angle, which is not influenced by the driver, is necessary. A transfer function can be calculated in order to get controlled steering of the rear wheels without the influence of load.

It is not possible to realize optimal characteristics, because the parameters of the vehicle are difficult to measure. Only an optimal diagnosis and control of driving condition realize a relief for the driver in every driving situation in order to avoid most of the accidents.

The often demanded sideslip angle compensation only worsens driving conditions on ice-coated roads. Therefore systems which identify the driving condition themselves have to be favoured in any case.  相似文献   

4.
In recent years the application of driver steering models has extended from the off-line simulation environment to autonomous vehicles research and the support of driver assistance systems. For these new environments there is a need for the model to be adaptive in real time, so the supporting vehicle systems can react to changes in the driver, their driving style, mood and skill. This paper provides a novel means to meet these needs by combining a simple driver model with a single-track vehicle handling model in a parameter estimating filter – in this case, an unscented Kalman filter. Although the steering model is simple, a motion simulator study shows it is capable of characterising a range of driving styles and may also indicate the level of skill of the driver. The resulting filter is also efficient – comfortably operating faster than real time – and it requires only steer and speed measurements from the vehicle in addition to the reference path. Adaptation of the steer model parameters is demonstrated along with robustness of the filter to errors in initial conditions, using data from five test drivers in vehicle tests carried out on the open road.

Abbreviations: ADAS: advanced driver assistance systems; CG: centre of gravity; CAN: controller area network; EKF: extended Kalman filter; GPS: global positioning system; UKF: unscented Kalman filter  相似文献   


5.
SUMMARY

Advanced Steering System with artificial steering wheel torque-active kinesthetic information feedback for improving handling qualities is discussed. Fundamentally the structure of the system may be considered to another form of model following control. In this system, a driver always remains in the control loop and receives steering control information which give him/her a direct hint to steer a steering wheel. This system works as a stability and control augmentation system of the vehicle to improve the vehicle handling qualities both in compensatory and pursuit control task, and is expected to reduce driver's workload. Effects of this system are analyzed in terms of man-machine system characteristics. Identification of driver dynamics was carried out to find why such improvement could be achieved. Availability of the proposed system is verified by analysis, simulator and proving ground tests.  相似文献   

6.
Abstract

Different driver models and driver/vehicle/road closed-loop directional control systems are reviewed and compared. Evaluation methods of vehicle handling quality based on closed-loop system dynamics, stability of the closed-loop system, and optimization of vehicle design are discussed.  相似文献   

7.
SUMMARY

Spatial random vibrations of a vehicle that arise during driving represent an important factor in functioning of a dynamic system: Driver - Vehicle - Environment. They carry certain information for driver and also cause fatigue of driver and passenger.

This is the reason why the tendency is towards the minimization of vibratory loads, what in practice can be achieved by optimization of characteristics of elasto - damping elements of a vehicle.

In this paper for optimization of elasto - damping elements of a vehicle we used a complex nonlinear model of a driver and a vehicle during the straight - line motion of the vehicle on a rough road. Optimization was performed by application of the Hooke - Jeeves method and by use of outside penalty functions as well as the objective function that enabled simultaneous optimization of vertical vibrations of the driver's seat, vibrations of the steering wheel, and normal reactions in the contact surface of the tyre and road. The optimization was performed with application of the computer HP 9000/800 SE on the example of a medium passenger car.  相似文献   

8.
ABSTRACT

Collision avoidance is a crucial function for all ground vehicles, and using integrated chassis systems to support the driver presents a growing opportunity in active safety. With actuators such as in-wheel electric motors, active front steer and individual wheel brake control, there is an opportunity to develop integrated chassis systems that fully support the driver in safety critical situations. Here we consider the scenario of an impending frontal collision with a stationary or slower moving vehicle in the same driving lane. Traditionally, researchers have approached the required collision avoidance manoeuver as a hierarchical scheme, which separates the decision-making, path planning and path tracking. In this context, a key decision is whether to perform straight-line braking, or steer to change lanes, or indeed perform combined braking and steering. This paper approaches the collision avoidance directly from the perspective of constrained dynamic optimisation, using a single optimisation procedure to cover these aspects within a single online optimisation scheme of model predictive control (MPC). While the new approach is demonstrated in the context of a fully autonomous safety system, it is expected that the same approach can incorporate driver inputs as additional constraints, yielding a flexible and coherent driver assistance system.  相似文献   

9.
SUMMARY

For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

10.
ABSTRACT

The paper presents an innovative method for a lap time minimisation by using genetic algorithms for a multi objective optimisation of a race driver–vehicle model. The decision variables consist of 16 parameters responsible for actions of a professional driver (e.g. time traces for brake, accelerator and steering wheel) on a race track part with RH corner. Purpose-built, high fidelity, multibody vehicle model (called ‘miMa’) is described by 30 generalised coordinates and 440 parameters, crucial in motorsport. Focus is put on modelling of the tyre tread thermodynamics and its influence on race vehicle dynamics. Numerical example considers a Rear Wheel Drive BMW E36 prepared for track day events. In order to improve the section lap time (by 5%) and corner exit velocity (by 4%) a few different driving strategies are found depending on thermal conditions of semi-slick tyres. The process of the race driver adaptation to initially cold or hot tyres is explained.  相似文献   

11.
ABSTRACT

So far, longitudinal motion control has focused on situations like highway driving, where disturbances of the road profile can be neglected. In this paper, we show how the Two Point Tire Model can be used to derive a novel feed-forward control law for a vehicle's longitudinal motion that considers the effects of the road profile and can complement existing control approaches. For this purpose, we recapitulate the basic model assumptions and equations and briefly discuss how it can be used on arbitrary road profiles. Two approaches for implementation in a real vehicle are presented. Comparisons of these approaches in simulation and to a human driver of an experimental vehicle show that the controller can deal with stepped obstacles of up to 14?cm in height. However, the control performance is essentially limited by the actuator delay and human drivers outperform the controller due to their ability of sensing subtle vehicle motions. The results indicate that the control performance can be further improved by using a preview on the necessary drive torque, which can be provided by the solution that we propose.  相似文献   

12.
SUMMARY

In the last five years the IKA (Institut für Kraftfahrwesen Aachen) and BMW created the microscopic traffic simulation program PELOPS. It simulates the traffic flow on motorways with a specific view on vehicle affairs. One application for PELOPS was the assessment of ACC (Adaptive Cruise Control) systems inside the PROMETHEUS program. It was shown, that PELOPS is a powerful tool for the analysis of new technologies. A new research period will extend the use of ACC about the functionality in urban areas. This requires an extension of PELOPS about some specific models. With this extension it is possible, to analyse new traffic technologies for the individual vehicles or the infrastructure. In a first step, PELOPS is extended about functions for suburban areas. This effects mainly the modelling of the driver behaviour. The driver behaviour is related to the traffic situation. In contrast to the normal traffic flow on motorways, the driver has to stop and go in the suburban area, he has to control lower distances and he has to react on other vehicles on cross-roads. New concepts for these functions are included in PELOPS and calibrated by detailed traffic data from a video observation and floating car measurements in the surrounding of Aachen. Based on the traffic measurement near Aachen, different scenarios are simulated to improve the traffic flow and to relieve the environment. These scenarios include ACC systems, inter-vehicle-communication and intelligent traffic lights. The paper shows some information's about the simulation technic and the results from the described analysis.  相似文献   

13.
SUMMARY

This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

14.
SUMMARY

This paper initially introduces a vehicle model that can be utilized for simulation tests in the field of AVCS studies. This model contains the non-linear elements of the engine, the torque converter, the automatic gear shift and the tire. The vehicle model has 3 degrees of freedom and it can be used for multiple vehicle simulations in AVCS as well as in ATIMS. This paper applies the model to the study and analysis of vehicle “platooning” for automated driving. In this paper, it is shown that platooning can be realized both longitudinally and laterally by the application of the sliding control.  相似文献   

15.
SUMMARY

When investigating dynamics of a driver-vehicle system, isolation between driver dynamics and vehicle dynamics becomes important, because interaction between them exists in the closed-loop system. The subject of this study is to examine effectiveness of AR-method by which each dynamics can be identified. The AR-method applied to lane changes, usually having rather short duration data, provides usefullness for the isolation. This method well reflects variation of subject drivers in identified results, and time series data recoverd by identified VAR-model is consistent with field data.  相似文献   

16.
SUMMARY

Paper deals with the linear behaviour of a railway vehicle with any arbitrary number of wheelsets, body parts and connecting elements. A vehicle which has both perfect curving properties and asymptotical stability at vanishing speed, has to satisfy a twofold condition, indicated by Wickens in 1978. In the present paper this condition is derived in reliance upon the dimension theorem for linear mappings. How the investigation can be executed in practice, is shown for the case of a two-axled vehicle. At last the behaviour in a transition curve is discussed.  相似文献   

17.
This paper proposes a mathematical driver model based on PID multi-controllers having two degrees of freedom. Each PID controller making up this model is synthesised by the Ziegler–Nichols oscillation method, using the linear time invariant models which are obtained around their nominal operating points. Different PID controllers are combined using nonlinear optimisation and the H constraint. To demonstrate its robustness, it was tested on two models: a linear parameter variant model and a nonlinear four-wheel model. It was also tested in situations of high dynamic demand. The driver model showed good performance, stability and trajectory tracking. The performance tests were carried out using experimental data acquired by a Laboratory Peugeot 307 developed by INRETS-MA. This driver model was developed for an application known as ‘Itinerary Rupture DIagnosis’ (DIARI), which aims to evaluate the physical limits of a vehicle negotiating a bend. DIARI requires a tool to determine the steering commands to be applied to a vehicle model, making extrapolations with respect to speed.  相似文献   

18.
韩超 《商用汽车》2014,(9):131-132
来自河南驻马店的侯师傅今年34岁,本来可以成为大学生的他,却因为巨大的家庭负担,成为了一名风里来雨里去的卡车驾驶员。一聊起他的卡车生活,就像打翻了的五味瓶,酸甜苦辣,什么味道都有。  相似文献   

19.
If a driver passes over a pedestrian lying on the road and flees, it is considered a crime. In several cases, even if the driver fled and was arrested, he/she often asserts that they did not know that the victim was a human being. However, the investigation agency often believes that a driver can certainly recognize when he/she passes over a person. Accordingly, such cases frequently lead to disputes due to the lack of criteria for recognizing when a driver was involved in run-over accidents. In this study, tests were conducted both to identify if drivers can recognize whether their vehicles passed over a person and to examine how they feel at the time. A silicon dummy, which was manufactured to have the same characteristic as the human chest, was used in this study. According to the method specified in ISO2631, the vibration delivered to the driver was measured, and eighteen participants drove a vehicle over the silicon dummy to experience how the vibrations felt. When the passenger car for the test ran over the dummy at speeds ranging from 10 km/h to 60 km/h, all participants recognized the delivered vibration, and the VDV that was delivered to the participants ranged from 1.81 m/s 1.75 to 2.38 m/s 1.75. The participants thought that the object they drove over was a stone or a piece of wood. This indicates that the driver certainly can recognize the vibrations generated from passing over a human chest even though it feels like a solid object.  相似文献   

20.
《JSAE Review》1999,20(4):531-536
A series hybrid city bus with diesel engine and electric batteries is studied on a specified route. The study uses two different basic control strategies, “On/off” and “Continuous” strategy. These basic strategies are complemented in two ways. First, an “Adviser” strategy which filters the driver commands and gives driver support feedback based on the route data. Second, an “Adapter” strategy, which adapts and the control to the route, using different control depending on the vehicle present position. Simulation results are presented. They show that the adviser and adapter strategies improves both emissions and fuel consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号