首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A low-order, lumped parameter model is proposed to describe the vertical vibration compliance of an automotive seat. The model includes nonlinear stiffness and damping effects that mimic the properties exhibited by open cell foams that are commonly used in the construction of an automotive seat cushion. A shaped sandbag was positioned on a seat cushion and vibrated to obtain test data. White noise acceleration with amplitude ranging from 0.05 g rms to 0.45 g rms in increments of 0.05 g rms was used to excite the seat track. A luxury car seat and a sports car seat were tested and a nonlinear seat model was identified that predicts the actual test data with fidelity. The paper demonstrates that once a family of model parameters is identified for a particular seat, then the model can be used for a wide spectrum of seat track inputs. Additional experiments also verified that when the sandbag mass was increased by as much as 50%, the predicted response using the proposed model was in agreement with the measured response. Finally, the paper reports the result of an experiment using a human subject on a seat cushion. A simulation using the new cushion model and an ISO vibration model of a seated human produced response data that was very similar to the actual test data.  相似文献   

2.
This paper presents vibration control of a passenger vehicle using an electronically controllable electro-rheological (ER) engine mount. A mixed-mode ER engine mount operating under the flow and shear modes is devised and manufactured. After establishing the dynamic model of the proposed ER engine mount, both field-dependent displacement transmissibility and dynamic stiffness of the ER engine mount are empirically evaluated. The ER engine mount is then incorporated with a full-vehicle model in order to investigate vibration control performance at the driver's seat position. The governing equation of motion of the full-vehicle model is formulated by considering engine excitation force, followed by designing a skyhook controller to attenuate unwanted vibration. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at idle speed are evaluated in the frequency and time domains.  相似文献   

3.
A combined lumped-parameter and multi-body system dynamic model of the human body–seat system has been constructed with masses and moments of inertia and with linear translational and rotational springs and dampers. The model was developed in four steps by minimising the sum-of-least-squares error between laboratory measurements and model predictions of the fore-and-aft driving point apparent mass and the fore-and-aft transmissibility of a car backrest. Good agreement was achieved between model predictions and both the median measured driving-point apparent mass and the median measured backrest transmissibility with six subjects. The model was capable of representing the measured apparent masses and predicting the backrest transmissibility with the individual subjects. It was also capable of predicting the backrest transmissibilities of two different car seats. A sensitivity study was conducted and the effects of the model parameters on the peak moduli and corresponding frequencies of the apparent mass and the backrest transmissibility are presented.  相似文献   

4.
This paper presents vibration control of a passenger vehicle using an electronically controllable electro-rheological (ER) engine mount. A mixed-mode ER engine mount operating under the flow and shear modes is devised and manufactured. After establishing the dynamic model of the proposed ER engine mount, both field-dependent displacement transmissibility and dynamic stiffness of the ER engine mount are empirically evaluated. The ER engine mount is then incorporated with a full-vehicle model in order to investigate vibration control performance at the driver's seat position. The governing equation of motion of the full-vehicle model is formulated by considering engine excitation force, followed by designing a skyhook controller to attenuate unwanted vibration. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at idle speed are evaluated in the frequency and time domains.  相似文献   

5.
运用子结构的建模方法建立了侧碰时的婴儿约束系统模型,该模型包括后车门总成模型、汽车后排座椅模型、婴儿安全座椅、P3/4假人模型、后排座椅安全带和婴儿座椅安全带,并运用规定结构运动的PSM方法定义车门总成的运动,在此基础上研究侧碰撞中婴儿安全座椅的设计参数对P3/4婴儿假人动力学响应及其损伤的影响。仿真结果表明:坐垫刚度和安全带刚度对婴儿假人损伤影响较大、坐垫摩擦系数对胸部加速度和颈部损伤影响较大。  相似文献   

6.
通过台车试验,对受方向盘角度影响和座椅刚度等影响下的几种典型的胸部伤害情况进行了分析研究,指出了在无安全气囊或气囊作用偏弱的情况下,方向盘的水平角度一般时容易造成胸部加速度偏大,方向盘水平角度偏大时容易造成胸部压缩变形量偏大;另外,也指出了碰撞中,坐垫的深度偏大和前端刚度偏强时容易增大假人胸部伤害,坐垫前端刚度偏弱时导致假人下沉可造成胸部伤害指标提高,这为约束系统的匹配提供了参考。  相似文献   

7.
This paper shows that laboratory measurements can be used for the identification of structure and parameters of commercial seat vertical suspension system model. A commonly used single-degree-of-freedom suspension model does not suffice. The system model presented is based on Zener's structure and clearly describes the dynamic properties of a vertical seat suspension with an adjustable damper. The model introduced, augmented with seat cushion dynamic model, predicts the seat vertical vibration mitigation properties under field conditions with a reasonable accuracy. Optimisation of the adjustable damper setting is performed using a two-objective function optimisation technique. This enables us to optimise not only the exerted vertical vibration acceleration but also the seat relative vertical displacement (stroke). Optimisation was facilitated for the particular suspended seat without the requirement of further field measurements. In addition, a two-parameter optimisation was performed showing possible further improvement in both objectives at the manufacturer's discretion. This study could be representative of driver's seats equipped with vertical seat suspension system using an air-spring and an adjustable damper.  相似文献   

8.
Idle vibration, occurring when a vehicle comes to a stop while the engine is on, is known to be a main cause of discomfort for passengers, and the customer effect has been recently growing. The frequency of idle vibration is determined by the engine type. To lower the vibration, various technologies have been applied to optimize the engine mount and vehicle body structure. In addition to the technological developments, research on human response with a consideration of idle vibration is needed to effectively reduce the level of discomfort experienced by passengers. Seats aimed at enhancing static comfort influence the sitting posture of passengers; sitting posture is a factor affecting human body characteristics that response to idle vibration. This study examined the absolute discomfort threshold of idle vibration according to the sitting postures of 13 taxi drivers. The four sitting postures of subjects on a rigid-body seat without a backrest were variables in the determination of absolute discomfort threshold of idle vibration. The absolute discomfort threshold curves obtained in this experiment were less sensitive to frequency changes than the frequency weighting function of ISO 2631-1.  相似文献   

9.
利用加速度剂量法对汽车座椅的动态舒适性进行分析和评价,并且通过Matlab进行仿真研究。通过分析作用在脊柱水平和垂直方向上的加速度剂量的大小来评判对身体损害的程度,从而为汽车座椅在振动舒适性设计方面提供参考。  相似文献   

10.
随着人们对人体健康逐渐重视,对农用车辆的舒适度进行改进显得迫不及待。本文充分考虑了振动幅度和动挠度两个方面,设计一种新型农用车辆减震座椅,采用阻尼可调减震器代替现在农用车辆广泛使用的一般阻尼不可调减震器,将单刚度弹簧改换成双螺旋弹簧,从而改善座椅系统的动态振动特性。  相似文献   

11.
针对冲击式压路机牵引主机座椅悬架系统与车的刚性连接问题,提出了应用空气弹簧座椅的设想。应用机械系统动力学软件ADAMS建立了牵引车仿真模型、减振器仿真模型及D级路面时域仿真激励信号,并加入相关约束组成整车振动仿真模型,进行振动仿真分析,结果表明:空气弹簧座椅的整车振动仿真模型可以有效地衰减人体受到的振动。  相似文献   

12.
Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.  相似文献   

13.
To provide initial design values of seat cushion and chassis suspension damping for wheel-drive electric vehicles (WDEVs), this paper presents an analytical estimation method and a practical damping parameters design method. Firstly, two formulae of the human body vertical acceleration in terms of the power spectrum density (PSD) and the root mean square (RMS) are deduced for WDEVs. Then, the coupling effects of the key vehicle parameters on ride comfort are revealed. Finally, with a practical example, the damping parameters of the cushion and the suspension are initially designed and analyzed. The results show that when every 10.0 kg increases for motor mass, the optimal damping values of the cushion and the suspension should be reduced by about 15.0 Ns/m and 50.0 Ns/m, respectively. However, the RMS acceleration increases 0.017 m/s2 with a decrease of 2.5 % for ride comfort.  相似文献   

14.
汽车主动悬架最优控制:采用频域计权形式性能指标函数   总被引:21,自引:0,他引:21  
本文从提高汽车的乘坐舒适性角度出发,研究了主动悬架的最优控制问题。根据坐位人体的振动响应特性构造了频域计权形式二交型性能指标函数。  相似文献   

15.
对汽车平顺性评价方法的探讨与建议   总被引:4,自引:0,他引:4  
首先分析了现行国家标准GB4970-1996<汽车平顺性随机输入行驶试验方法>与国际上通行的人体振动评价标准ISO2631-1997的区别.通过道路试验测量了驾驶员坐垫、靠背和脚部的平移振动以及坐垫的旋转振动共lO个方向的振动.分析发现汽车中人体振动的峰值因子一般小于9;而按照GB4970和ISO2631的试验数据对比表明,GB4970在一定程度上低估了人体振动.分析各方向振动所占的比例发现,坐垫垂向振动、靠背前后振动和坐垫侧倾振动影响最大.最后提出了对汽车平顺性评价方法的建议.  相似文献   

16.
A vertical vehicle–track coupled dynamic model, consisting of a high-speed train on a continuously supported rail, is established in the frequency-domain. The solution is obtained efficiently by use of the Green's function method, which can determine the vibration response over a wide range of frequency without any limitations due to modal truncation. Moreover, real track irregularity spectra can be used conveniently as input. The effect of the flexibility of both track and car body on the entire vehicle–track coupled dynamic response is investigated. A multi-body model of a vehicle with either rigid or flexible car body is defined running on three kinds of track: a rigid rail, a track stiffness model and a Timoshenko beam model. The results show that neglecting the track flexibility leads to an overestimation of both the contact force and the whole vehicle vibration response. The car body flexibility affects the ride quality of the vehicle and the coupling through the track and can be significant in certain frequency ranges. Finally, the effect of railpad and ballast stiffness on the vehicle–track coupled vibration is analysed, indicating that the stiffness of the railpad has an influence on the system in a higher frequency range than the ballast.  相似文献   

17.
油气弹簧非线性特性对车辆平顺性的影响分析   总被引:4,自引:0,他引:4  
推导并建立了某工程车辆油气弹簧的非线性刚度和阻尼特性的数学模型,并将其导入到车辆模型中。根据汽车悬架质量分配特点.将汽车简化为两自由度的舣质量振动系统,对此两自由度模型的车轮加速度、车身加速度和悬架动行程进行了仿真从仿真结果可以看出,非线性油气弹簧能很好地衰减由路面传递来的振动。分析了刚度和阻尼的变化对车辆平顺性的影响。  相似文献   

18.
The purpose of this paper is to determine the lumped suspension parameters that minimise a multi-objective function in a vehicle model under different standard PSD road profiles. This optimisation tries to meet the rms vertical acceleration weighted limits for human sensitivity curves from ISO 2631 [ISO-2631: guide for evaluation of human exposure to whole-body vibration. Europe; 1997] at the driver's seat, the road holding capability and the suspension working space. The vehicle is modelled in the frequency domain using eight degrees of freedom under a random road profile. The particle swarm optimisation and sequential quadratic programming algorithms are used to obtain the suspension optimal parameters in different road profile and vehicle velocity conditions. A sensitivity analysis is performed using the obtained results and, in Class G road profile, the seat damping has the major influence on the minimisation of the multi-objective function. The influence of vehicle parameters in vibration attenuation is analysed and it is concluded that the front suspension stiffness should be less stiff than the rear ones when the driver's seat relative position is located forward the centre of gravity of the car body. Graphs and tables for the behaviour of suspension parameters related to road classes, used algorithms and velocities are presented to illustrate the results. In Class A road profile it was possible to find optimal parameters within the boundaries of the design variables that resulted in acceptable values for the comfort, road holding and suspension working space.  相似文献   

19.
In this paper, a method for selecting the dynamic characteristics of seat suspension systems is presented. The basic principle of such a method consists in the shaping of nonlinear seat suspension dynamic behaviour for the different requirements defined by machine operators. A combined optimisation procedure has allowed to find the Pareto-optimal system configuration with simultaneous minimisation of conflicted optimisation criteria: the suspended body acceleration and suspension travel. As an example of the proposed method, the seat with a viscous-elastic passive suspension is investigated and its vibro-isolation properties are shaped by the air-spring and shock-absorber force characteristics.  相似文献   

20.
座椅刚度和阻尼参数的选取,直接影响座椅的乘坐舒适性。采用CAE技术,对某中型卡车司机座椅进行动力学响应分析,并对座椅的弹簧刚度和减振器阻尼参数进行动力学优化,优化后座垫上的加速度峰值大幅降低,取得了比较好的效果。通过平顺性试验验证,优化后的座椅结构在各种车速下,总计权值明显低于原结构。摸索出了一条运用CAE技术对机械式座椅的乘坐舒适性进行分析和优化的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号