首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of active suspensions is presented which provides near optimum isolation of base motion as well as zero static deflection for force disturbances using a simple type of feedback. The load leveling effect is rapid with the system stabilized using isolated mass velocity feedback both for a semi-active damper and for the load leveler. The system can be made energy conservative and fail safe since the system reverts to a reasonable passive isolator if the load leveling effect and even if the active damping effect is switched off. The system could be incorporated in automotive vehicles with some extension of the feedback control to account for several aspects of body motion.  相似文献   

2.
SUMMARY

Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to conventional suspensions using passive elements such as springs and dampers. It is often assumed that if practical difficulties are neglected, active systems could in principle produce arbitrary ideal, behavior. It is shown, using a simple linear two degree-of-freedom suspension system, model that even using complete state feed back and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active case. If the ideal suspension performance is defined based on low-pass filtering of roadway unevenness inputs, an active suspension may not offer much better performance than a partially active or adaptive passive suspension depending upon the values of certain vehicle parameters.  相似文献   

3.
SUMMARY

Optimal design of an active suspension system for road vehicles can be solved using LQR techniques. Such a problem is equivalent, in the frequency domain, to determine the state feedback gain matrix that minimizes the H2 norm of a suitable transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable state feedback law whose gains are function of the system parameters. This law, and thus the characteristic elements of the passive suspension, can be determined as an approximation of the H2 optimal solution. This methodology allows one to choose the best controller from a constrained subset (i.e., all possible passive suspensions of a particular form) of all possible controllers.  相似文献   

4.
SUMMARY

The bandwidth of the body response to a road input in an active suspension may be considerably reduced if the axle motions are independently controlled and if, at the same time, the effects of static and dynamic loads are counteracted by integral action in the body force control system. The paper presents a further application of the Ferguson-Rekasius method, leading to optimal output control with incomplete state feedback. To achieve narrow bandwidth body response the support springs are replaced by hydraulic actuators, and vibration absorbers or active wheel dampers are employed for the control of the axle motions. Active wheel damping is the more effective and gives good results. Proportional-plus-integral control action is shown to reduce the transient body displacements due to external forces.  相似文献   

5.
SUMMARY

Some linear stochastic control theory relevant to the design of active suspension systems subject to integrated or filtered white noise excitation is reviewed, and application of the theory to a particular problem is considered. The problem considered is the well known quarter car problem in which a control law which minimises a performance function representing passenger discomfort, suspension working space, and tyre load fluctuations is required. With full state feedback, the requirement for a formulation of the problem which leads to the system under consideration being observable and controllable is referred to, and it is shown how a well known coordinate transformation enables this requirement to be satisfied. With limited state (or output) feedback, problem formulations which will avoid potential numerical problems in deriving the optimal control are described. Example solutions are included in order to illustrate the methods.  相似文献   

6.
SUMMARY

An adaptive control system of the model following type is proposed for drive motion control of a four wheel steering (4WS) car with using neural network (NN) which has mastered nonlinear friction force between tire and road surface. A model of one rigid body is adopted which represents appropriately two kinds of car motion caused by steering action, namely the lateral displacement and the yawing rotation, and an equation of motion is described in a simplified form to make a system equation for motion control possible. Nonlinear relation between the cornering force of tire and the slip angle is obtained by numerical analysis with the tire model proposed by E. Fiala, taking friction coefficient and car speed as the parameters. The result is used as the teaching signal for NN. Three NN are used in the control system composed of both the feed-forward and the feedback circuits in order to realize adaptive control. Validity and usefulness of the proposed adaptive control system with NN are verified by three kinds of computer simulation.  相似文献   

7.
SUMMARY

In this paper, an optimal suspension system is derived for a quarter-car model using multivariable integral control. The suspension system features two parts. The first part is an integral control acting on suspension deflection to ensure zero steady-sate offset due to body and maneuvering forces as well as road inputs. The second is a proportional control operating on the vehicle system states for vibration control and performance improvement. The optimal ride performance of the active suspensions based on linear full-state feedback control laws with and without integral control together with the performance of passive suspensions are compared.  相似文献   

8.
SUMMARY

Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

9.
SUMMARY

A simple vehicle model is presented incorporating passive, active, and semi-active suspensions. When the desired feedback variables are ideally available, the system response is well understood and excellent sprung mass isolation results. More often than not, the measured variables must be signal processed in some manner prior to their use in some control algorithm. This paper presents the expected response of a simple vehicle with an active and/or semi-active suspension, subject to non-ideal feedback information.  相似文献   

10.
SUMMARY

The development of a mathematical model of a limited bandwidth hydro-pneumatic suspension that is incorporated into a vehicle handling model is described. The combined model is used to evaluate a suitable control strategy for eliminating body roll during a cornering manoeuvre. The philosophy behind the roll control strategy has been to use feedback measurements of the body motions which do not compromise the ride control. A study of the influence of the position of the body motion feedback transducer on the effectiveness of the system to reduce the body roll is presented. Non-linear modelling of the suspension components for a 0.8g cornering manoeuvre has revealed performance limitations. Conclusions are drawn as to the effectiveness of the control scheme.  相似文献   

11.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

12.
SUMMARY

The equations of motion are derived for a single wheel steerable pneumatic tire system. Included in this system are a built-in wheel wobble and wheel-tire irregularities which produce oscillation of the normal load. Special emphasis is placed on the dynamic characterization of the tire cornering force and aligning torque. The results show that the built-in wheel wobble causes a steady shimmy which is large when the wheel rotation frequency is close to the natural shimmy frequency. The results also show that a normal load oscillation which has a frequency approximately twice the natural shimmy frequency causes a decrease in shimmy stability.  相似文献   

13.
This paper presents an approach to design the H /GH 2 static-output feedback controller for vehicle suspensions by using linear matrix inequalities (LMIs) and genetic algorithms (GAs). Three main performance requirements for an advanced vehicle suspension are considered in this paper. Among these requirements, the ride-comfort performance is optimized by minimizing the H norm of the transfer function from the road disturbance to the sprung mass acceleration, while the road-holding performance and the suspension deflection limitation are guaranteed by constraining the generalized H 2 (GH 2) norms of the transfer functions from the road disturbance to the dynamic tyre load and the suspension deflection to be less than their hard limits, respectively. At the same time, the controller saturation problem is considered by constraining its peak response output to be less than a given limit using the GH 2 norm as well. A four-degree-of-freedom half-car model with active suspension system is applied in this paper. Several kinds of H /GH 2 static-output feedback controllers, which use the available sprung mass velocities or the suspension deflections as feedback signals, are obtained by using the GAs to search for the possible control gain matrices and then resolving the LMIs together with the minimization optimization problem. These designed H /GH 2 static-output feedback controllers are validated by numerical simulations on both the bump and the random road responses which show that the designed H /GH 2 static-output feedback controllers can achieve similar or even better active suspension performances compared with the state-feedback control case in spite of their simplicities.  相似文献   

14.
SUMMARY

The catenary-pantograph system and its dynamic behaviour play a decisive role for high speed trains from the power collecting point of view. The decisive criterion for assessing the contact quality is to reduce the contact force variability as far as possible. In this paper active pantograph elements are introduced in order to improve the system performance. The control strategy is based on Extended Kalman Filter technique, used to get a contact force estimation available for control feedback. The same estimation procedure based on the Extended Kalman Filter is also used to obtain some information useful to overhead line diagnostic purposes.  相似文献   

15.
SUMMARY

A vehicle model, with 10 degrees of freedom is used to investigate the skidding conditions of any wheel of the vehicle in motion. Equations for the load transfer and equations for the pneumatic tire spring and shock absorber are derived. Parameters such as gradual cornering, U-curve cornering, the wavy road surface of different wave lengths and cases of independent and connected suspension systems are inputs to the system. The tire calculated forces and their corresponding maximum resistance forces are the outputs of the systems. A connected suspension system is found to resist skidding better than the independent suspension system. The system is non-linear, and numerical solutions are obtained.  相似文献   

16.
SUMMARY

This paper describes the present state of a general purpose computer program for calculating the dynamic response of vehicles travelling over guideways which may be elastic.

The linearized state-equations of motion for general multibody vehicles are constructed automatically by the program, these equations are supplemented by the equations for the active subsystems. Finally, the vehicle system equations are combined with the modal equations for elastic guideways and the complete set of coupled equations is solved simultaneously by numerical integration.  相似文献   

17.
电控空气悬架载荷平衡系统仿真   总被引:1,自引:0,他引:1  
结合当代最新设计理念,利用MATLAB和ADAMS/Car软件的联合仿真,设计了电控空气悬架载荷平衡系统,并对整体系统进行了几个工况的模拟仿真。结果表明:所设计的空气悬架载荷平衡系统性能良好;联合MATLAB和ADAMS软件的长处来设计系统,能够使产品开发过程加快,同时产品开发成本也相应下降。  相似文献   

18.
SUMMARY

The transportation of ore can be made more cost efficient by use of bigger and heavier trains. An increase in axle load is thereby wanted. The fleet of ore wagons of today at Malmbanan/Ofotbanan in northern Sweden and Norway has to be updated. It is of interest to find out if it is possible to allow a higher axle load on the track with new wagons

To be able to understand and predict the effects on track wear depending on what type of vehicle that is in use, the contact forces between wheels and rails have to be determined. A computer aided analysis has been made of the dynamic behaviour of three test vehicles equipped with different types of three-piece bogies running at Malmbanan. The vehicles are modelled and their interaction with the track is analysed using the multibody simulation package GENSYS

The simulations show that, even if the axle load is increased from 25 tons to 30 tons and the velocity is increased from 50 km/h to 60 km/h, it is possible to reduce lateral track forces and wear in curves by using a different bogie than the standard three-piece bogie used today.  相似文献   

19.
SUMMARY

This study considers a new design methodology in the context of active vehicle suspension control. The approach combines concepts from Stochastic Optimal Control with those of Learning Automata. A learning automaton effectively learns optimal control on-line in the vehicle, in an appropriate stochastic “test-track” environment. For practical application, the overwhelming advantage of this approach is that no explicit modelling is required, and considerable time savings may be expected in system development. This simulation study considers the on-line learning of optimal control in a low-bandwidth active suspension system, where control feedback is confined to a body-mounted accelerometer at each corner of the vehicle. It is shown that learning can successfully take place under a range of conditions, including the case when there is substantial transducer noise. The performance of the resulting control system is shown to depend heavily on the nature of the learning environment.  相似文献   

20.
SUMMARY

An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号