首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决线控转向系统故障可能导致车辆失控的问题,提出一种故障检测及容错控制协同设计方法。首先,建立了包含线控转向系统加性故障的车辆动力学模型;其次,联合车辆动力学模型及故障检测/容错控制器,建立跟踪误差闭环控制系统;然后,求解满足闭环系统H∞性能的线性矩阵不等式,得到故障检测/容错控制器参数;最后,基于dSPACE Full-Size HIL进行硬件在环仿真测试。结果表明,该方法可快速检测出转向系统故障,同时实现了车辆的容错控制。  相似文献   

2.
This paper presents a model-based fault detection and isolation technique for automotive yaw moment control system. For this purpose, a novel fault detection and isolation algorithm for a class of actuator-plant systems is proposed. Compared with the existing fault detection and isolation techniques that can only isolate a target fault or require multiple observers to isolate multiple faults, a unique strength of the proposed algorithm is its ability to isolate faults at the component level solely based on the residuals generated by a single observer. The validity of the proposed algorithm, applied to automotive yaw moment control system, is investigated via a simulation study based on a realistic vehicle dynamics model. The results suggest that the proposed algorithm can isolate the component subject to fault while effectively handling two perennial nuisances: sensitivity to disturbances and false alarms due to uncertainties.  相似文献   

3.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

4.
利用Q480电控汽油机的相关参数和试验数据,建立了进气管空气动态模型;结合信号特征比较法和进气管空气动态模型设计出适合于电控汽油机进气系统传感器的故障诊断策略和故障应急管理策略;最后,将自主研发的带有进气系统传感器故障诊断和故障应急管理策略的控制单元安装到整车上进行试验,试验结果证明了故障诊断策略的正确性和故障应急策略的可行性。  相似文献   

5.
The Vehicle stability control system is an active safety system designed to prevent accidents from occurring and to stabilize dynamic maneuvers of a vehicle by generating an artificial yaw moment using differential brakes. In this paper, in order to enhance vehicle steerability, lateral stability, and roll stability, each reference yaw rate is designed and combined into a target yaw rate depending on the driving situation. A yaw rate controller is designed to track the target yaw rate based on sliding mode control theory. To generate the total yaw moment required from the proposed yaw rate controller, each brake pressure is properly distributed with effective control wheel decision. Estimators are developed to identify the roll angle and body sideslip angle of a vehicle based on the simplified roll dynamics model and parameter adaptation approach. The performance of the proposed vehicle stability control system and estimation algorithms is verified with simulation results and experimental results.  相似文献   

6.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   

7.
Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.  相似文献   

8.
分布式驱动电动汽车可以实现四轮转矩分配和差动转向,提升整车的动力学控制性能和经济性,但是四轮转矩独立可控的特点也对功能安全提出挑战.当前轮单侧电机出现执行器故障失效情况时,不仅会产生附加横摆力矩降低车辆安全性,差动转向功能的存在还会使车辆严重偏航.基于此,在设计分布式驱动-线控转向一体化底盘的基础上,基于功能安全提出一...  相似文献   

9.
In this paper, a lane departure detection method is studied and evaluated via a professional vehicle dynamics software. Based on a robust fuzzy observer designed with unmeasurable premise variables with unknown inputs, the road curvature is estimated and compared with the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed algorithm as the first driving risk indicator. To reduce false alarms and take into account the driver corrections, a second driving risk indicator is considered, which is based on the steering dynamics, and it gives the time to the lane keeping. The used nonlinear model deduced from the vehicle lateral dynamics and a vision system is represented by an uncertain Takagi–Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is then proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using Lyapunov method. The proposed approach is evaluated under different driving scenarios using a software simulator. Simulation results show good efficiency of the proposed method.  相似文献   

10.
This paper describes a new approach to estimate vehicle dynamics and the road curvature in order to detect vehicle lane departures. This method has been evaluated through an experimental set-up using a real test vehicle equipped with the RT2500 inertial measurement unit. Based on a robust unknown input fuzzy observer, the road curvature is estimated and compared to the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed lane departure detection algorithm as the first driving risk indicator. To reduce false alarms and take into account driver corrections, a second driving risk indicator based on the steering dynamics is considered. The vehicle nonlinear model is deduced from the vehicle lateral dynamics and road geometry and then represented by an uncertain Takagi–Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using the Lyapunov method.  相似文献   

11.
This paper proposes a novel integrated controller with three-layer hierarchical structure to coordinate the interactions among active suspension system (ASS), active front steering (AFS) and direct yaw moment control (DYC). First of all, a 14-degree-of-freedom nonlinear vehicle dynamic model is constructed. Then, an upper layer is designed to calculate the total corrected moment for ASS and intermediate layer based on linear moment distribution. By considering the working regions of the AFS and DYC, the intermediate layer is functionalised to determine the trigger signal for the lower layer with corresponding weights. The lower layer is utilised to separately trace the desired value of each local controller and achieve the local control objectives of each subsystem. Simulation results show that the proposed three-layer hierarchical structure is effective in handling the working region of the AFS and DYC, while the quasi-experimental result shows that the proposed integrated controller is able to improve the lateral and vertical dynamics of the vehicle effectively as compared with a conventional electronic stability controller.  相似文献   

12.
This paper presents an integrated structure for a passive and active fault tolerant control (FTC) design approach in the framework of a robust nonlinear control technique called Dynamic Surface Control (DSC). As motivated by the automated vehicle application, we consider two categories of possible faults: pre-specified (a priori) and non-specified faults. It is first shown that DSC can be considered as a passive FTC approach in the sense that it gives simultaneous robust stability to a set of nonlinear systems even in the presence of model uncertainties and the pre-specified faults. Then, the non-specified fault is classified depending on the fault’s impact on the closed-loop system and isolatability from a fault detection and diagnosis (FDD) system. If a fault is both intolerable and isolatable, an active FTC approach is taken which includes FDD and controller reconfiguration. More specifically, trajectory reconfiguration is considered to accommodate the actuator fault, i.e., to compensate for the performance loss due to the fault within the framework of a switched hierarchical structure. Finally, the integrated structure for the longitudinal control of an automated transit bus is designed through the proposed method. Simulation results of the fault tolerant controller are shown for both single and multiple multiplicative faults. This controller was implemented on the California PATH transit buses in a demonstration of automated public transportation technology in San Diego, California in August of 2003.  相似文献   

13.
A robust yaw stability control design based on active front steering control is proposed for in-wheel-motored electric vehicles with a Steer-by-Wire (SbW) system. The proposed control system consists of an inner-loop controller (referred to in this paper as the steering angle-disturbance observer (SA-DOB), which rejects an input steering disturbance by feeding a compensation steering angle) and an outer-loop tracking controller (i.e., a PI-type tracking controller) to achieve control performance and stability. Because the model uncertainties, which include unmodeled high frequency dynamics and parameter variations, occur in a wide range of driving situations, a robust control design method is applied to the control system to simultaneously guarantee robust stability and robust performance of the control system. The proposed control algorithm was implemented in a CaSim model, which was designed to describe actual in-wheel-motored electric vehicles. The control performances of the proposed yaw stability control system are verified through computer simulations and experimental results using an experimental electric vehicle.  相似文献   

14.
This paper introduces the active third-axle system as an innovative vehicle dynamic control method. This method can be applicable for different kinds of three-axle vehicles such as buses, trucks, or even three-axle passenger cars. In this system, an actuator on the middle axle actively applies an independent force on the suspension to improve the handling characteristics, and hence, its technology is similar to slow-active suspension systems. This system can change the inherent vehicle dynamic characteristics, such as under/over steering behaviour, in the linear handling region, as well as vehicle stability in the nonlinear, limit handling region. In this paper, our main focus is to show the potential capabilities of this method in enhancing vehicle dynamic performance. For this purpose, as the first step, the proposed method in both linear and nonlinear vehicle handling regions is studied mathematically. Next, a comprehensive, nonlinear, 10 degrees of freedom vehicle model with a fuzzy control strategy is used to evaluate the effectiveness of this system. The dynamic behaviour of a vehicle, when either uncontrolled or equipped with the active third axle is then compared. Simulation results show that this active system can be considered as an innovative method for vehicle dynamic control.  相似文献   

15.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

16.
胡辉  李冰天  仇文革 《隧道建设》2018,38(6):948-953
为模拟隧道在发震断层中的近场动力响应和破坏机制,提出一种模拟长大隧道穿越活动断层动力响应的新型模型试验装置,并设计一种通过改变试验平台底部组合弹簧参数来改变模型箱振动特性的试验方法。该试验装置不仅能解决传统试验方法中受迫振动的问题,而且能模拟断层错动引起地层位移由发震断层位置向远端逐渐减小的过程,进而模拟穿越活动断层时长大隧道断层段到非断层段沿纵向的振动特性变化。该方法通过改变组合弹簧中单个弹簧单元的刚度系数和弹簧单元的个数等,可改变试验箱中断层在断层错动发生时的振动频率和错动位移,进而得到振动频率-组合弹簧刚度和错动位移-组合弹簧刚度的回归公式,可通过前期试验得到的回归公式来设置相应的组合弹簧形式,对后续试验中多种不同振动频率和错动位移的试验工况进行模拟。  相似文献   

17.
范小彬  邓攀 《天津汽车》2013,(12):47-50
为提高汽车主动安全系统自适应控制性能,需要对轮胎/路面附着系数进行精确的识别或估算。鉴于附着系数估计的复杂性,文章综述了目前路面附着系数估算中的汽车动力学建模和轮胎/路面摩擦模型建模,重点讨论了轮胎/路面附着系数识别算法中传感器的直接检测估计法,以及基于车辆动力学、回正力矩和状态观测器等动力学模型的估计算法,并对各估算方法存在的问题与发展趋势等进行了分析。对开发汽车主动安全电控系统和提高汽车产业核心竞争力具有重要意义。  相似文献   

18.
Fault detection is considered to be one way to improve system reliability and dependability for railway vehicles. The secondary lateral and anti-yaw dampers are the most critical parts in railway suspension systems. So far, the dampers have been modelled as linear components in the fault detection and isolation observer design. In this work, a Hybrid Extended Kalman filter is used to capture the nonlinear characteristics of the dampers. In order to detect and isolate faults, a nonlinear residual generator is developed, which can distinguish clearly between different types of faults. A lateral half train model serves as an example for the proposed technique. The results show that failures in the nonlinear suspension system can be detected and isolated accurately.  相似文献   

19.
Reliability of the railway vehicle suspension system is of critical importance to the safety of the vehicle. It is very desirable to monitor the health condition and the performance degradation of the suspension system online, which offers the important information of the suspension system and is critically important for the condition-based maintenance rather than scheduled maintenance in the future. Advanced fault diagnosis method is one of the most effective means for the health monitoring of the suspension system. In this paper, taking the lateral suspension system as an examcple, the fault isolation issue for different component faults occurring in the suspension system is concerned. The sensor configuration for obtaining the vehicle state information and the mathematical model for the lateral suspension system are presented. Four fault features in the time domain and three fault features in the frequency domain are used for each sensor signal. Three different methods, Dempster–Shafer (D–S) evidence theory, Fisher discrimination analysis (FDA) and support vector machine (SVM) techniques are applied to the fault isolation problem. Simulation study is carried out by means of the professional multi-body simulation tool, SIMPACK. The simulation results show that these methods can isolate the considered component faults effectively with a high accuracy. The D–S evidence-based fault isolation approach outperforms the other two methods.  相似文献   

20.
A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic ‘input–output’ model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software ‘ADTreS’ are utilised as ‘virtual measurements’ considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号