首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes how observer-based techniques for intelligent fault detection were applied to monitoring an active suspension control system in an experimental articulated heavy vehicle. The aim was to define a practical method for detecting faults, taking into account the nonlinearities of the vehicle. The experimental vehicle was divided conceptually into subsystems, namely the passive dynamics of the trailer, the dynamics of the hydraulic actuators, and the expected response of the closed-loop system. A linear dynamic model was designed for each subsystem. A fault detection observer was then designed for each dynamic model. The observer feedback gains were chosen to optimise estimation by the observer residual of specified errors on the output measurements. The observer residuals were then normalised and combined logically to provide a fault diagnosis. The performance of the fault detection scheme is demonstrated in the case of sensor faults and changes in the operation of the active control system.  相似文献   

2.
This is a theoretical investigation into the effect of various suspension configurations on a tracked vehicle performance over bump terrains. The model developed is validated using published experimental data of the modal characteristics of the vehicle. The desired performance is based on ride comfort via the mixed objective function (MOF), which combines the crest factor of bounce acceleration, bounce displacement, angular acceleration, and pitch angle. The optimisation process involves evaluating the MOF for different numbers and locations of dampers and under different rigid bump road conditions and speeds. The system responses of the selected suspension configurations in the time and frequency domains are compared against the undamped suspension. The results show that the suspension configurations have a significant effect on the vehicle mobility over bump road profiles. For a five-road–wheel half model of a tracked vehicle, the maximum number of dampers to use for ride comfort over these road bumps is three with the dampers located at wheel positions 1, 2 and 5. This confirms the current practice for many tracked vehicles with 10 road wheels. However, it is further shown that the suspension fitted with two dampers at the extreme road wheels offer the best performance over various rigid bump terrains.  相似文献   

3.
In this study, a full-scale rail vehicle model is used to investigate how lateral ride comfort is influenced by implementing the H and sky-hook damping control strategies. Simulations show that significant ride comfort improvements can be achieved on straight track with both control strategies compared with a passive system. In curves, it is beneficial to add a carbody centring Hold-Off Device (HOD) to reduce large spring deflections and hence to minimise the risk of bumpstop contact. In curve transitions, the relative lateral displacement between carbody and bogie is reduced by the concept of H control in combination with the HOD. However, the corresponding concept with sky-hook damping degrades the effect of the carbody centring function. Moreover, it is shown that lateral and yaw mode separation is a way to further improve the performance of the studied control strategies.  相似文献   

4.
Fault detection is considered to be one way to improve system reliability and dependability for railway vehicles. The secondary lateral and anti-yaw dampers are the most critical parts in railway suspension systems. So far, the dampers have been modelled as linear components in the fault detection and isolation observer design. In this work, a Hybrid Extended Kalman filter is used to capture the nonlinear characteristics of the dampers. In order to detect and isolate faults, a nonlinear residual generator is developed, which can distinguish clearly between different types of faults. A lateral half train model serves as an example for the proposed technique. The results show that failures in the nonlinear suspension system can be detected and isolated accurately.  相似文献   

5.
This paper presents a method based on continuous wavelet transform to detect the faults of vehicle suspension systems. The Morlet wavelet functions are employed to approach the natural frequencies of the system and the frequency components of the signal with relative maximum energy. To evaluate our method, we use a full vehicle dynamic model which has been simulated in ADAMS/CAR and validated by laboratory test results. The suspension faults have been considered due to the damage of shock absorbers (dampers) and upper damper bushings (UDBs) and assumed as the decrease in damping force and loose joints, respectively. In this paper, the incapability of the spectral analysis by using fast Fourier transform in analysis of the signals is revealed through applying the inputs that include transient characteristics and then wavelet transform employed to achieve more proper results. A swept frequency is applied as an input to the wheels that simulates the road irregularities. After detection of faulty sections of the system using signal energy distribution, the defects of damper and UDBs are distinguished from each other through observing the changes of natural frequencies and corresponding energy amplitudes.  相似文献   

6.
A novel scheme for the fault detection and condition monitoring of vehicle suspensions is presented in this study. The new technique exploits the dynamic interactions between different vehicle modes caused by component failures in the system, leading to a simple but effective solution. Compared with many model-based fault detection techniques, the proposed technique does not require complex mathematical models of the system and it overcomes potential difficulties associated with nonlinearities and parameter variations in the system. The use of inexpensive inertial sensors and ease of tuning make the practical implementation of the proposed scheme straightforward. A conventional railway vehicle is used in the study to illustrate the basic ideas as well as the effectiveness of the novel fault detection method, although the general principle is applicable to other systems.  相似文献   

7.
Reliability of the railway vehicle suspension system is of critical importance to the safety of the vehicle. It is very desirable to monitor the health condition and the performance degradation of the suspension system online, which offers the important information of the suspension system and is critically important for the condition-based maintenance rather than scheduled maintenance in the future. Advanced fault diagnosis method is one of the most effective means for the health monitoring of the suspension system. In this paper, taking the lateral suspension system as an examcple, the fault isolation issue for different component faults occurring in the suspension system is concerned. The sensor configuration for obtaining the vehicle state information and the mathematical model for the lateral suspension system are presented. Four fault features in the time domain and three fault features in the frequency domain are used for each sensor signal. Three different methods, Dempster–Shafer (D–S) evidence theory, Fisher discrimination analysis (FDA) and support vector machine (SVM) techniques are applied to the fault isolation problem. Simulation study is carried out by means of the professional multi-body simulation tool, SIMPACK. The simulation results show that these methods can isolate the considered component faults effectively with a high accuracy. The D–S evidence-based fault isolation approach outperforms the other two methods.  相似文献   

8.
基于工程车辆的作业特点,针对影响工程车辆作业安全舒适性的减震系统的关键技术进行评述。根据工程车辆减震系统的发展现状,结合国内外油气悬架系统的先进技术及特点,探讨了油气悬架研究的关键技术,认为开发新型油气悬架减震系统符合现代工程车辆对悬架系统的要求和发展方向,将会对中国工程车辆的技术升级与进步有较大的促进作用。  相似文献   

9.
车辆悬架系统是保证车辆操纵稳定性和舒适性的重要部件,电子控制悬架系统相对传统被动悬架系统能大幅度提高车辆的上述性能。在对电子控制悬架系统做了相关研究的基础上,介绍了电子控制悬架系统的功能和类型,分析了它的基本工作原理,着重论述以现代控制理论为核心的电控悬架系统的控制方法。  相似文献   

10.
胡杰  高志文 《汽车工程》2021,43(1):1-9,18
为准确预测电动汽车动力电池的能耗,缓解驾驶者的里程焦虑,本文中提出一种基于数据驱动的电动汽车动力电池SOC预测模型.首先分析电动汽车能耗构成并提取能耗影响因素,接着基于某款电动出租车CAN总线采集的汽车运行数据,采用机器学习算法,提出基于温度分层的能耗模型,通过宏观数据与微观数据的融合减小误差,最后使用该模型对车载BM...  相似文献   

11.
Rail vehicles are today increasingly equipped with active suspension systems for ride comfort purposes. In this paper, it is studied whether these often powerful systems also can be used to improve crosswind stability. A fast rail vehicle equipped with active secondary suspension for ride comfort purposes is exposed to crosswind loads during curve negotiation. For high crosswind loads, the active secondary suspension is used to reduce the impact of crosswind on the vehicle. The control input is taken from the primary vertical suspension deflection. Three different control cases are studied and compared with the only comfort-oriented active secondary suspension and a passive secondary suspension. The application of active secondary suspension resulted in significantly improved crosswind stability.  相似文献   

12.
主动悬架最优控制整车模型的研究   总被引:17,自引:5,他引:17  
董波 《汽车工程》2002,24(5):422-425
以一个车辆的整车模型为研究对象,通过利用轴距预瞄信息,应用最优控制理论设计了一个车辆的悬架控制策略,通过模拟和仿真的结果,验证了该模型和算法的可行性,并分析了轴距预瞄控制对于改进车辆性能的能力,检验了所建立的整车模型。  相似文献   

13.
简要阐述汽车漏电的故障原因,介绍汽车漏电的检查方法和注意事项,并通过实际案例分析,进一步强调对于汽车漏电故障的诊断与维修,应根据诊断情况,选择不同的检测方法,但都要首先排除蓄电池自身的故障,然后再进行故障检测。在诊断汽车电器故障时,充分利用先进仪器进行故障诊断,能够大大提高维修诊断的效率,起到事半功倍的效果。  相似文献   

14.
路面不平度对道路车辆行驶安全性及车辆动力学响应具有重要影响。通过将路面不平度识别与先进悬架控制结合,有望能进一步提升乘员舒适性和车辆的操纵稳定性。现有基于数据驱动的路面分类方法难以高效处理时变参数与车速,现有基于模型的路面识别算法需要已知精确车辆模型,在实际应用中面临车辆物理参数难以获得的问题。提出一种融合模型和数据驱动的路面分类算法,采用基于模型的方法反算等效路面轮廓,结合数据预处理方法,对车辆响应和反算等效路面轮廓数据进行滤波;对等效路面轮廓和响应信息进行时域频域特征计算,采用ReliefF算法进行关键特征提取,构建基于径向基函数神经网络的路面分类器,进行路面分级识别;通过仿真试验和实车试验验证了不同车辆参数和车速下所提出的算法鲁棒性。  相似文献   

15.
周小斌 《交通科技》2010,(2):100-102
基于城市轨道交通模式中车辆制式选择的必要性,介绍了直线电机车辆与轻轨车辆的原理及特点,同时分析了两种模式下车辆的关键技术,并在此基础上阐述了其运用条件。在进行技术经济比较后,提出了长沙市轨道交通运用车辆应优先考虑采用轮轨车辆。  相似文献   

16.
悬架系统是一个复杂的动力学系统,其模型的精确性、合理性对主动悬架的研究起到决定性作用.为进一步满足车辆乘坐舒适性的要求,以整车模型为研究对象,运用八板块方法进行动力学分析,根据牛顿运动学定律推导出悬架各部分的力学微分方程,从而建立了包含俯仰运动模型、侧倾运动模型和转向运动模型的整车模型,为车辆主动悬架的进一步研究提供了理论基础与依据.  相似文献   

17.
多自由度车辆模型主动悬架及鲁棒控制   总被引:9,自引:3,他引:9  
考虑发动机、座椅和乘客等多种因素影响,建立了一个多自由度车辆模型;用H∞方法设计了低自由度控制器。并比较了H∞控制器和LQ控制器在该系统中的表现。  相似文献   

18.
The longitudinal connection between a chassis and a wheel in a conventional vehicle suspension system is commonly very stiff than the vertical connection. Such a mechanism can efficiently isolate vibrations and absorb shocks in the vertical direction but cannot sufficiently attenuate the impact in the longitudinal direction. In order to overcome such a limitation, a planar suspension system (PSS) with spring–damper struts in both the longitudinal and vertical directions is proposed so that the vibration along any direction in the wheel rotation plane can be isolated. In this paper, the dynamic responses of a vehicle with PSS due to a single bump and random road unevenness are investigated. The ride quality of the vehicle with PSS is evaluated in accordance with ISO 2631. A comparison with that of a similar conventional vehicle is conducted to demonstrate the promising potentials of the PSS in improving the vehicle ride quality.  相似文献   

19.
以Pro/Engineer参数化建模的动态模拟为理论基础,提出并解决了专用车设计中悬挂系统动态仿真的课题,为优化专用汽车改装设计的整体布置,建立模拟运动的理论分析。  相似文献   

20.
    
A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic ‘input–output’ model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software ‘ADTreS’ are utilised as ‘virtual measurements’ considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号