首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with the design concepts for steerable bogies. A brief historical background is given and the modern design basis generated by the creep theory is summarised with regard to curving performance and dynamic stability of two- and three-axle bogies. The basic structural elements used for trailing and motorised steerable bogies are illustrated. Experience gained with some recent designs of self-steering and forced-steering bogies is discussed and achievable stability and curving performances are quoted.  相似文献   

2.
SUMMARY

This paper describes the modelling of a two axle railway-bogie with variable design configurations and its application in the investigation of the behaviour in transitional and circular curves. Several results indicate possibilities to improve the curving properties and recommend the usage of forced-steering bogies, which show better performance in narrow curves without unbearable sacrifices to high-speed-behaviour on straight track.  相似文献   

3.
Active steering control in the form of secondary yaw control (SYC) and actuated wheelset yaw (AWY) have been in prototype development. This paper presents a new active steering bogie design, actuated yaw force steering (AY-FS), that is able to steer under high traction loads in tight curves. The AY-FS bogie design is compared with the AWY design. The steering performance AWY under high traction loads has not been previously reported. This paper examines five control methods, three for AWY and two for AY-FS bogies and assesses the traction curving and stability control performance of the alternative designs and control methods compared with each other and to passive steering bogie designs. The curving performance results showed considerable advantage in the proposed AY-FS bogies over the AWY. It was shown that control must be applied to both the yaw angle and the steering angle of the bogie to achieve the best traction steering performance which was not possible with the AWY bogies. The proposed new bogie designs of AY-FS overall give better traction curving and stability performance than the AWY designs.  相似文献   

4.
The cross-bracing applied to 2-axle freight bogies compromises the trade-off between curving and stability on a higher level, from the point of view of vehicle dynamic properties, than is possible to achieve with classical structure. This paper presents a simplified theory of stability for a vehicle with H-frame cross-braced bogies. Application of this theory to preliminary design studies involves simple calculations. The results of calculations in the form of stability regions are instructive and help in understanding the problem. This theory does not claim to be comprehensive but it can be useful for preliminary design studies.  相似文献   

5.
This article compares the dynamic behaviour of different configurations of radial and conventional two-axle bogies. In general, the design parameters for a better curve negotiation are not compatible with those for good stability. As the main target of this article is to compare the curving performances of different bogies under the same design basis, several bogie configurations with the same level of stability, obtained by choosing proper primary suspension stiffnesses, have been used. The comparison includes a conventional bogie and three radial bogies with differing self-steering and forced-steering principles in three different passenger services: High Speed, Regional and Mass Transit. The analysis has been concentrated on parameters such as stability, lateral wheel-track forces in curve and wheel wear indices. The results show that the radial bogie configurations studied do not make significant contributions in general applications with regard to a conventional bogie. It is only under specific running conditions and types of service that some radial bogie configurations provide advantages with respect to the conventional bogie.  相似文献   

6.
This article compares the dynamic behaviour of different configurations of radial and conventional two-axle bogies. In general, the design parameters for a better curve negotiation are not compatible with those for good stability. As the main target of this article is to compare the curving performances of different bogies under the same design basis, several bogie configurations with the same level of stability, obtained by choosing proper primary suspension stiffnesses, have been used. The comparison includes a conventional bogie and three radial bogies with differing self-steering and forced-steering principles in three different passenger services: High Speed, Regional and Mass Transit. The analysis has been concentrated on parameters such as stability, lateral wheel-track forces in curve and wheel wear indices. The results show that the radial bogie configurations studied do not make significant contributions in general applications with regard to a conventional bogie. It is only under specific running conditions and types of service that some radial bogie configurations provide advantages with respect to the conventional bogie.  相似文献   

7.
The traction control in modern electric and diesel electric locomotives has allowed rail operators to utilise high traction adhesion levels without undue risk of damage from uncontrolled wheel spin. At the same time, some locomotive manufacturers have developed passive steering locomotive bogies to reduce wheel rail wear and further improve locomotive adhesion performance on curves. High locomotive traction loads in curving are known to cause the loss of steering performance in passive steering bogies. At present there are few publications on the curving performance of locomotive steering with linkage bogies. The most extreme traction curving cases of low speed and high adhesion for hauling locomotives have not been fully investigated, with effects of coupler forces and cant excess being generally ignored. This paper presents a simulation study for three axle bogie locomotives in pusher and pulling train positions on tight curves. The simulation study uses moderate and high traction adhesion levels of 16.6% and 37% for various rail friction conditions. Curving performance is assessed, showing forced steering bogies to have considerable advantages over self steering bogies. Likewise it is shown that self steering bogies are significantly better than yaw relaxation bogies at improving steering under traction. As the required traction adhesion approaches the rail friction coefficient, steering performance of all bogies degrades and yaw of the bogie frame relative to the track increases. Operation with excess cant and tensile coupler forces are both found to be detrimental to the wear performance of all locomotive bogies, increasing the bogie frame yaw angles. Bogie frame pitching is also found to have significant effect on steering, causing increased performance differences between bogie designs.  相似文献   

8.
SUMMARY

The general form of the equations of motion of a symmetric railway vehicle with two unsymmetric two-axle bogies is derived. The equations include a generic elastic stiffness matrix that describes the nature and configuration of the structural connections between the various components of the vehicle. This matrix satisfies the condition for perfect steering (without generating creep forces) on uniform curves and the necessary condition for dynamic stability derived in previous work. The paper shows the application of these basic conditions to a class of generic unsymmetric bogies. The analysis has as its objective the derivation of the simplest rather than the most general configuration that meets the conditions imposed. The results are related to past and current practice. It is shown that perfect steering, with stability at low speeds, can be achieved by means of passive suspension elements not employing linkages, and that it is possible to simplify existing steering arrangements.  相似文献   

9.
The primary purpose of this study is to provide a qualitative analysis of the dynamics of the self-steering trucks that are commonly used for freight locomotives – namely, EMD's Radial Truck and GE's Steerable Truck – on improving curving performance and increasing adhesion in curves. Although there exists a number of anecdotal statements on the ability of steerable trucks to reduce curving forces and increase adhesion in curves, to the best of our knowledge, there exists no study that provides a qualitative or quantitative analysis of these features of steerable trucks. Two aspects of locomotive trucks are essential for their ability to deliver small curving forces and high adhesion in curves. First, the ability to allow the axles to yaw sufficiently relative to the truck frames, such that they can hold a small angle of attack with the rail. Second, providing sufficiently large longitudinal stiffness between the end axles and the axles and truck frame, to accommodate high adhesions. An equivalent stiffness analysis is used to show that the two steerable trucks that are considered for this study are far superior to conventional, three-axle, straight trucks in providing both a smaller angle of attack and a higher longitudinal stiffness for better curving and adhesion characteristics. The qualitative analysis of this study agrees with the experience the railroads have had with their self-steering trucks. The findings of this study indicate that self-steering trucks can result in lower lateral forces, accommodate tighter curves, and deliver higher adhesion in curves; without lowering the critical hunting speed of the locomotive. The results further show that the steering mechanism stiffness can have a large effect on the lateral, longitudinal, and yaw stiffness between the end axles; therefore, significantly lowering curving forces, and increasing adhesion and critical hunting speed of the truck.  相似文献   

10.
This paper describes the modelling of a two axle railway-bogie with variable design configurations and its application in the investigation of the behaviour in transitional and circular curves. Several results indicate possibilities to improve the curving properties and recommend the usage of forced-steering bogies, which show better performance in narrow curves without unbearable sacrifices to high-speed-behaviour on straight track.  相似文献   

11.
The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.  相似文献   

12.
A Qualitative Analysis of the Dynamics of Self-Steering Locomotive Trucks   总被引:1,自引:0,他引:1  
The primary purpose of this study is to provide a qualitative analysis of the dynamics of the self-steering trucks that are commonly used for freight locomotives - namely, EMD's Radial Truck and GE's Steerable Truck - on improving curving performance and increasing adhesion in curves. Although there exists a number of anecdotal statements on the ability of steerable trucks to reduce curving forces and increase adhesion in curves, to the best of our knowledge, there exists no study that provides a qualitative or quantitative analysis of these features of steerable trucks. Two aspects of locomotive trucks are essential for their ability to deliver small curving forces and high adhesion in curves. First, the ability to allow the axles to yaw sufficiently relative to the truck frames, such that they can hold a small angle of attack with the rail. Second, providing sufficiently large longitudinal stiffness between the end axles and the axles and truck frame, to accommodate high adhesions. An equivalent stiffness analysis is used to show that the two steerable trucks that are considered for this study are far superior to conventional, three-axle, straight trucks in providing both a smaller angle of attack and a higher longitudinal stiffness for better curving and adhesion characteristics. The qualitative analysis of this study agrees with the experience the railroads have had with their self-steering trucks. The findings of this study indicate that self-steering trucks can result in lower lateral forces, accommodate tighter curves, and deliver higher adhesion in curves; without lowering the critical hunting speed of the locomotive. The results further show that the steering mechanism stiffness can have a large effect on the lateral, longitudinal, and yaw stiffness between the end axles; therefore, significantly lowering curving forces, and increasing adhesion and critical hunting speed of the truck.  相似文献   

13.
SUMMARY

The use of controlled traction rods to give active yaw relaxation of coned wheelsets is investigated, and is shown to give significant improvements in curving performance without compromising stability, even on curves for which there is flange contact. An assessment of practical implications such as power, actuator and control requirements is included.  相似文献   

14.
SUMMARY

Legislation limits the load that may be transferred to the roadway by the axies of a commercial vehicle and this has resulted in the development of multi axle bogies for both the tractor and trailer units of articulated vehicles and at the rear of rigid vehicles, some of these bogies contain self steering or articulation steered axles

Experience shows that the tyre wear characteristics of multi axle bogies may be unsatisfactory. The paper analyses the role of such bogies in the context of vehicle handling and shows how the lateral tyre forces vary between the axles. An hypotheses relating the forces in a steady state turn to wear is given. The analysis may also be applied to the general case of vehicle handling.  相似文献   

15.
SUMMARY

A survey is given of the theory developed by author during recent years for an optimal design of railway vehicle running gears. It enables the designer to build a running gear which at the same time has good curving properties and is stable up to a high vehicle speed.  相似文献   

16.
SUMMARY

Paper deals with the linear behaviour of a railway vehicle with any arbitrary number of wheelsets, body parts and connecting elements. A vehicle which has both perfect curving properties and asymptotical stability at vanishing speed, has to satisfy a twofold condition, indicated by Wickens in 1978. In the present paper this condition is derived in reliance upon the dimension theorem for linear mappings. How the investigation can be executed in practice, is shown for the case of a two-axled vehicle. At last the behaviour in a transition curve is discussed.  相似文献   

17.
SUMMARY

The equations of motion are derived for a single wheel steerable pneumatic tire system. Included in this system are a built-in wheel wobble and wheel-tire irregularities which produce oscillation of the normal load. Special emphasis is placed on the dynamic characterization of the tire cornering force and aligning torque. The results show that the built-in wheel wobble causes a steady shimmy which is large when the wheel rotation frequency is close to the natural shimmy frequency. The results also show that a normal load oscillation which has a frequency approximately twice the natural shimmy frequency causes a decrease in shimmy stability.  相似文献   

18.
SUMMARY

The very-high-speed tests carried out by SNCF between the end of 1989 and May 1990, are an extension of the investigations which have been made for many years in order to acquire the control of high speeds. The high-speed run which ended the tests is well known [1], [2],[3].

In order to place the final test campaign in its context, we can recall progression made during the last decade.

In February 1981, the maximal speed of 380 km/h was reached with a TGV-PSE1 train set, having the same configuration as the series, but only seven trailers instead of eight.

During the following years, until 1986, the pneumatic suspension and the new Y 231 carrying bogies designed for TGV-ATL train sets were developed, with numerous test runnings in the speed range from 300 to 350 km/h, in order to obtain certitudes as regards the stability of the bogies and the appropriate choice of anti-hunting devices for commercial speeds of 270 km/h (LGV-PSE) or 300 km/h (LGV-ATL).

These tests allowed the definition of the TGV equipment design principles, which are applied today as regards the critical speed of the bogies.

Between 1985 and 1988, the development of the prototype train set equiped with self-controlled synchronous motors (March 1988) led once more to numerous runnings at high speed, in December 1988 with the so-called “operation TGV 88”. During this operation, the speed range from 350 to 400 km/h was investigated (maximal speed 408,4 km/h on December 12th 1988).

Apart from the capability of the synchronous traction equipment to develop the required power and the performance consisting in the realization of such tests on a line kept in operation (LGV-PSE), the teachings gathered together during this test campaign were decisive for the pursuit of the operation.

On this occasion, we discovered that:

-with the single-phase GPU pantograph mounted on this train set, we could get the current collection under control without difficulties inside the studied speed range,

-the bogies presented a stability margin distinctly higher than that which had been estimated, according to the results of former experiences.

Consequently, the test campaign of the TGV 117 could be engaged with a great confidence in the capabilities of the TGV equipment to achieve markedly higher speeds with full safety. The preparation of this test campaign had begun in 1986 and was conducted in a parallel direction to the above mentioned experimentation.

The campaign was preceded by a preliminary test campaign with the train set TGV-ATL n° 308, with a reduced train composition, including eight trailers. The goal was the validation, until 390 km/ h, of the test field consisting in the TGV-ATL Aquitaine branch, as well for the track as for the overhead contact line, the achievement of which was just ended.

The operation TGV 117 was then carried out in two phases:

-in December 1989 the train set TGV-ATL 325 with a reduced train composition consisting in four trailers between two motor cars reached the maximal speed of 482,4 km/h on December 5th,

-in May 1990 the same train set, but with only three trailers, improved the performance unto the final record: the speed of 515,3 km/h was reached on May 18th.  相似文献   

19.
SUMMARY

The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   

20.
ABSTRACT

This paper presents an analysis of loaded freight wagon dynamics in curve alignments. We investigate the effects of the combined centre of gravity (CCOG) on the running safety of freight wagons and examine proper position of the CCOG. A simple wagon-rail model is implemented using the multibody dynamics software ADAMS/Rail. The simulation model is operated on curve tracks with various radii and velocities and the curving performances are evaluated. The results indicate that the CCOG can be located within a flexible and accurate range. The longitudinal offset is good for the curving performance and the permissible lateral offset should be assessed based on the curve radius and cant deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号