首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In modern railway industry the simulation of the behaviour of railway vehicles has become an important design method during the last years. Modern simulation packages offer modelling elements that are highly adapted for standard and unusual simulation scenarios. A specific application case is the simulation of a railway vehicle travelling through a switch. It makes high demands on the simulation software due to the inconvenient modelling elements needed: the changing rail profiles on the blade rail and in the crossing vee area as well as the guard rail with its additional contact at the back of the wheel. The article gives an overview over the state of the art in railway vehicle simulation and presents a simulation of a passenger car running through a switch as an application example.  相似文献   

2.
In railway turnout, the stock rail and switch rail are separated to enable the vehicle changing among the tracks, and they are provided with different rail resilience level on the baseplate. Therefore, there will be vertical relative motion between stock/switch rails under the wheel loads, and the relative motion will affect consequentially the wheel–rail contact conditions. A method is developed to investigate the effect of the relative motion of stock/switch rails on the load transfer distribution along the switch panel in high-speed railway turnout. First, the rigid wheel–rail contact points of stock/switch rails are calculated based on the trace line method, and then the contact status is determined by the presented equations, finally, the distribution of wheel–rail contact forces of stock/switch rails is obtained based on the continuity of interface displacements and forces which using an approximate surface deformation method. Some parametric studies have been performed, such as the lateral displacement of wheel set, the vertical contact forces, the wheel profiles and the vertical stiffness of rail pad. The results of the parametric study are presented and discussed.  相似文献   

3.
The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel–rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel–rail interface is heavily loaded.  相似文献   

4.
5.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

6.
This paper presents a framework to investigate the dynamics of overall vehicle–track systems with emphasis on theoretical modelling, numerical simulation and experimental validation. A three-dimensional vehicle–track coupled dynamics model is developed in which a typical railway passenger vehicle is modelled as a 35-degree-of-freedom multi-body system. A traditional ballasted track is modelled as two parallel continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The non-ballasted slab track is modelled as two parallel continuous beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The vehicle subsystem and the track subsystem are coupled through a wheel–rail spatial coupling model that considers rail vibrations in vertical, lateral and torsional directions. Random track irregularities expressed by track spectra are considered as system excitations by means of a time–frequency transformation technique. A fast explicit integration method is applied to solve the large nonlinear equations of motion of the system in the time domain. A computer program named TTISIM is developed to predict the vertical and lateral dynamic responses of the vehicle–track coupled system. The theoretical model is validated by full-scale field experiments, including the speed-up test on the Beijing–Qinhuangdao line and the high-speed running test on the Qinhuangdao–Shenyang line. Differences in the dynamic responses analysed by the vehicle–track coupled dynamics and by the classical vehicle dynamics are ascertained in the case of vehicles passing through curved tracks.  相似文献   

7.
Train-tram railway vehicles implement the connection between urban tramlines and the surrounding railway network. Train-tram railway vehicles, which use existing infrastructure, can help to avoid large investments in new railways or tramlines and make interchanges between city center and surrounding cities unnecessary. However, present train-tram rail vehicle cannot carry out the integration of operating by means of high speed in intercity railways with operating on small radius of curvature in inner city tramlines. This paper aims to develop a new model for solid wheelsets train-tram railway vehicles, which will not only pass the curve of 25mR radius of curvature traveling on inner city tramlines with the speed of 18 km/h, but also can travel on straight railway with 200 km/h high speed between intercity. In this paper, a new train-tram model, including five car-body and five motor bogies with ten traction motors, is addressed. Expect as a real rail vehicle testing, this study prefer virtual simulation, which is an effective way to show the rail vehicle performance, such as ride stability, ride comfort and ride safety, by means of evaluating the dynamic characteristics of rail vehicle. Moreover, Design of Experiment (DOE) method is used to optimize solid wheelsets bogie system on improving passenger comfort, safety and stability of train-tram. Parameters of components of bogie system are tuned to minimize the derailment coefficient and the ride comfort index. The results shows that the best comfort index for passenger and minimum derailment coefficient are found. The results also show that this optimized new train-tram model is reliable and practical enough to be applied on real rail vehicle design.  相似文献   

8.
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.  相似文献   

9.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

10.
Railway local irregularities are a growing source of ground-borne vibration and can cause negative environmental impacts, particularly in urban areas. Therefore, this paper analyses the effect of railway track singular defects (discontinuities) on ground vibration generation and propagation. A vehicle/track/soil numerical railway model is presented, capable of accurately predicting vibration levels. The prediction model is composed of a multibody vehicle model, a flexible track model and a finite/infinite element soil model. Firstly, analysis is undertaken to assess the ability of wheel/rail contact models to accurately simulate the force generation at the wheel/rail contact, in the presence of a singular defect. It is found that, although linear contact models are sufficient for modelling ground vibration on smooth tracks, when singular defects are present higher accuracy wheel/rail models are required. Furthermore, it is found that the variation in wheel/rail force during the singular defect contact depends on the track flexibility, and thus requires a fully coupled vehicle/track/foundation model. Next, a parametric study of ground vibrations generated by singular rail and wheel defects is undertaken. Six shapes of discontinuity are modelled, representing various defect types such as transition zones, switches, crossings, rail joints and wheel flats. The vehicle is modelled as an AM96 train set and it is found that ground vibration levels are highly sensitive to defect height, length and shape.  相似文献   

11.
A review is presented of dynamic modelling of railway track and of the interaction of vehicle and track at frequencies which are sufficiently high for the track's dynamic behaviour to be significant. Since noise is one of the most important consequences of wheel/rail interaction at high frequencies, the maximum frequency of interest is about 5kHz: the limit of human hearing. The topic is reviewed both historically and in particular with reference to the application of modelling to the solution of practical problems. Good models of the rail, the sleeper and the wheelset are now available for the whole frequency range of interest. However, it is at present impossible to predict either the dynamic behaviour of the railpad and ballast or their long term behaviour. This is regarded as the most promising area for future research.  相似文献   

12.
Abstract

A review is presented of dynamic modelling of railway track and of the interaction of vehicle and track at frequencies which are sufficiently high for the track's dynamic behaviour to be significant. Since noise is one of the most important consequences of wheel/rail interaction at high frequencies, the maximum frequency of interest is about 5kHz: the limit of human hearing. The topic is reviewed both historically and in particular with reference to the application of modelling to the solution of practical problems. Good models of the rail, the sleeper and the wheelset are now available for the whole frequency range of interest. However, it is at present impossible to predict either the dynamic behaviour of the railpad and ballast or their long term behaviour. This is regarded as the most promising area for future research.  相似文献   

13.
This paper presents dynamic contact loads at wheel–rail contact point in a three-dimensional railway vehicle–track model as well as dynamic response at vehicle–track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel–rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle–track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel–rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel–rail impact forces that arise in the wheel–rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.  相似文献   

14.
This paper proposes an approach for the validation of railway vehicle models based on on-track measurements. The validation of simulation models has gained importance with the introduction of new applications of multi-body simulation in railway vehicle dynamics as the assessment of track geometry defects, the investigation of derailments and the analysis of gauging. These applications are not only interested in qualitative predictions of the vehicle behaviour but also in precise quantitative results of the safety and comfort relevant vehicle responses. The validation process aims at guaranteeing that the simulation model represents the dynamic behaviour of the real vehicle with a sufficient good precision. A misfit function is defined which quantifies the distance between the simulated and the measured vehicle response allowing to evaluate different models at different running conditions. The obtained modelling errors are compared to the measurement uncertainty estimated for one vehicle using repeatability analysis.  相似文献   

15.
A practical method to determine the zone of two contact points and the transfer of wheel–rail forces between two rails in a turnout is presented in this paper. The method is based on a wheel–rail elastic penetration assumption and used to study a turnout system for a 200 km/h high-speed railway in China. Rail profiles in a number of key sections in the turnout are identified first, and profiles in other sections are then obtained by interpolation between key sections. The track is modelled as flexible with rails and sleepers represented by beams and the interaction between the vehicle and turnout is simulated for cases of the vehicle passing the turnout. Results are mainly presented for two-point contact positions and the characteristics of the wheel–rail forces transference. It is found that the heights of the switch and crossing rail top have significant effects on the wheel–rail contact forces. Finally, the optimised top height for the crossing rails is proposed to reduce the system dynamic force in the turnout system.  相似文献   

16.
杨冠岭  王平  宋杨 《路基工程》2011,(4):63-64,68
为提高尖轨承载能力,减小轮轨接触应力,增加尖轨薄弱段的耐磨性能,延长道岔使用寿命,对曲尖轨截面在横向荷载下的接触应力进行了研究;通过建立基本轨和曲尖轨的实体模型,应用有限元法,对曲尖轨各截面应力、曲尖轨均匀加宽后各截面应力以及曲尖轨缩短后各截面应力进行了分析。结果表明,尖轨截面应力随轨顶宽度的增加呈现非线性减小趋势,均匀加宽曲尖轨和缩短曲尖轨有利于尖轨的受力。结合对曲尖轨截面应力的研究,提出了尖轨加强的方案。  相似文献   

17.
18.
A new benchmark is being undertaken to assess the impact of wheel-rail contact modelling assumptions on the simulation of railway vehicle dynamics. The benchmark is split into two distinct simulation cases: the first, Case A, using a single wheelset to pinpoint the differences between the contact models and the second, Case B, using a simplified railway vehicle to assess the effect of the different contact models on the simulation of vehicle behaviour. After an open discussion of the Case A specification, the initial call for contributions was made in November 2006. The discussion of simulation Case B specifications was opened in April 2007 and to date is ongoing. This paper briefly introduces the new Manchester Contact Benchmark and presents some of the initial findings from simulation Case A.  相似文献   

19.
This paper presents a complete numerical model for studying the vertical dynamics of the vehicle/track interaction and its impact on the surrounding soil, with the emphasis on vehicle modelling. A decoupling between the track and the soil is proposed, due to the difficulty of considering all the subsystem components. The train/track model is based on a multibody model (for the vehicle) and a finite element model (for the track). The soil is modelled using an infinite/finite element approach. Simulations of both models are carried out in the time domain, which is better able to simulate the propagation of the vibration waves and to take into account the possible nonlinearity of a component. The methodology is applied in the case of an urban tram track and validated with the available experimental data. Models for the tram, the track and the soil are described. Results from the complete model of the vehicle and a simple model, based on an axle load, are compared with experimental results and the benefits of a complete model in the simulation of the ground vibration propagation induced by railway vehicles are demonstrated. Moreover, a parametric study of the vehicle wheel type is conducted, which shows the advantage of a resilient wheel, for various rail defects.  相似文献   

20.
Inspired by a manufacturing process of switch rails for railway turnouts, a method for the optimisation of switch rail profile geometry is presented. The switch rail profile geometry is parameterised with four design variables to define a B-spline curve for the milling tool profile, and two design variables to prescribe the deviation from the nominal vertical path of the milling tool. The optimisation problem is formulated as a multi-objective minimisation problem with objective functions based on the contact pressure and the energy dissipation in the wheel–rail contact. The front of Pareto optimal solutions is determined by applying a genetic type optimisation algorithm. The switch rail profile designs are evaluated by simulations of dynamic train–turnout interaction. It is concluded that the obtained set of Pareto optimal solutions corresponds to a rather small variation in design variables where increased profile height and increased profile shoulder protuberance are preferred for both objectives. The improvement in the objectives comes at the cost of an earlier wheel transition to the switch rail and thus increased vertical loading at a thinner rail cross-section. The performance of the optimised geometry is evaluated using a set of 120 measured wheel profiles, and it is shown that the optimised geometry reduces damage also for this large load collective. It is concluded that accurate limits on switch rail loading need to be established to determine the feasible design space for switch rail geometry optimisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号