首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
离散空间小波分析的环境荷载下桥梁的损伤识别   总被引:4,自引:1,他引:4  
利用离散空间小波多分辨分析,分别探讨了匀速简谐汽车作用荷载和随机白噪声作用荷载(模拟汽车与风荷载的耦合)两种环境荷载作用下桥梁已有损伤位置的识别方法。建构了桥梁结构损伤定位的离散空间小波变换的理论模型,同时讨论了不同小波函数的选取及分解层次的确定方法。该方法仅需测量损伤后桥梁的位移或应变响应,不需损伤前后的结构特性,不影响交通。对原始输入的位移信号进行逐步差分前处理使得识别结果更准确。模拟试验表明,离散空间小波多分辨分析是识别环境荷载作用下桥梁损伤位置的准确可靠方法。  相似文献   

2.
Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton–Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.  相似文献   

3.
提出一个以行动感测和云端运算为基础的实时坑洞侦测方法,通过分析内嵌于手机内的加速度传感器数据,并利用欧拉角进行手机加速度正规化的动作,改善搜集加速度数据时需要固定手机姿态角的限制.结合坑洞侦测算法进行坑洞判定,以及使用空间内插法改善全球定位系统(GPS)定位误差,将坑洞信息回传至云端服务器.再将此坑洞信息实时传输至每个使用者的行动式手持装置中,并搭配扩增实境(AR)导航功能,让用户可以避开坑洞路段.实验表明,所提出的基于行动感测的实时坑洞侦测方法将可以准确判断出坑洞.   相似文献   

4.
In order to investigate the damping characteristics of railway-overhead-wire systems, we propose herein an approach based on the continuous wavelet transform (CWT) and two existing formulas concerning Rayleigh damping coefficients (RDCs). In the proposed process, the displacement histories of a real catenary are first obtained by using a set of noncontact photogrammetric devices, following which an exclusive catenary damping ratio related to the first dominant modal component in the catenary response is identified through a complex Morlet CWT. Thereafter, iterative finite-element analysis is conducted to find the optimal RDCs, which involves using two related formulas and the similarity between the catenary displacements obtained by simulation and experimentation. The results of our study demonstrate that this combined approach is constructive, especially for structures with closely spaced modes, such as catenaries. For the case studied herein, the catenary modal damping ratio at 1.19?Hz is approximately 1%, and the mass and stiffness proportional Rayleigh damping coefficients are approximately 0.02845 and 0.00274, respectively.  相似文献   

5.
The dynamic interaction between the catenary and the pantographs of high-speed trains is a very important factor that affects the stable electric power supply. In order to design a reliable current collection system, a multibody simulation model can provide an efficient and economical method to analyze the dynamic behavior of the catenary and pantograph. In this article, a dynamic analysis method for a pantograph-catenary system for a high-speed train is presented, employing absolute nodal coordinates and rigid body reference coordinates. The highly flexible catenary is modeled using a nonlinear continuous beam element, which is based on an absolute nodal coordinate formulation. The pantograph is modeled as a rigid multibody system. The analysis results are compared with experimental data obtained from a running high-speed train. In addition, using a derived system equation of motion, the calculation method for the dynamic stress in the catenary conductor is presented. This study may have significance in providing an example that a structural and multibody dynamics model can be unified into one numerical system.  相似文献   

6.
为实时监测路面层面应力应变情况,开发了一种无人值守自动采集路面层面响应参数的系统。系统主要由四部分别组成:太阳能充电锂电池组电源、车辆到位感知模块、数据采集存储系统及上位机分析软件。通过现场试验对系统的功能进行的验证表明,开发的系统能够实现无人值守、自动采集路面层面应变信号。为进一步分析信号所反映的路面层面响应规律,提高信号的信噪比,对系统采集的信号进行了不同数字滤波处理,结果表明小波滤波处理路面层面应变信号具有优越性。  相似文献   

7.
Most of the high-speed trains in operation today have the electrical power supply delivered through the pantograph–catenary system. The understanding of the dynamics of this system is fundamental since it contributes to decrease the number of incidents related to these components, to reduce the maintenance and to improve interoperability. From the mechanical point of view, the most important feature of the pantograph–catenary system consists in the quality of the contact between the contact wire of the catenary and the contact strips of the pantograph. The catenary is represented by a finite element model, whereas the pantograph is described by a detailed multibody model, analysed through two independent codes in a co-simulation environment. A computational procedure ensuring the efficient communication between the multibody and finite element codes, through shared computer memory, and suitable contact force models were developed. The models presented here are contributions for the identification of the dynamic behaviour of the pantograph and of the interaction phenomena in the pantograph–catenary system of high-speed trains due to the action of aerodynamics forces. The wind forces are applied on the catenary by distributing them on the finite element mesh. Since the multibody formulation does not include explicitly the geometric information of the bodies, the wind field forces are applied to each body of the pantograph as time-dependent nonlinear external forces. These wind forces can be characterised either by using computational fluid dynamics or experimental testing in a wind tunnel. The proposed methodologies are demonstrated by the application to real operation scenarios for high-speed trains, with the purpose of defining service limitations based on train and wind speed combination.  相似文献   

8.
This paper studies the evolvement of the wear irregularity of contact wire using wire thickness data measured yearly from a section of railway catenary. The power spectral density and time–frequency representation based on the wavelet transform are employed for data analysis, with an emphasis on local wear irregularities that are crucial for contact wire condition assessment. To investigate the cause of wear irregularity evolvement and the mutual influence with the pantograph–catenary dynamic interaction, simulations considering the influence of wear irregularity are carried out based on the finite element method. Analyses of the actual wear irregularities and the dynamic contact force under singular and complex wear irregularities are performed. Although the wear irregularity has limited impact on the pantograph–catenary interaction, it can induce the vibration of pantograph and contact wire that will lead to a notable increase of contact force standard deviation. The evolvement of wear irregularity is closely associated with the span length and dropper distribution of catenary structure and the running direction of pantograph. In addition, it is found feasible to detect the wear irregularity based on contact force, on condition that the sampling frequency is high enough to reflect the indicative frequencies.  相似文献   

9.
为了在定期检测信息的基础上实现大跨度预应力混凝土斜拉桥的健康状态评估,提出采用无线多点自动综合测试系统监测结构应力,利用环境随机振动法测试全桥索力,并结合桥梁几何测试信息,获得桥梁状态的综合检测方法。针对招宝山大桥,建立最优化遗传静力反分析模型,采用基于遗传算法的大型复杂结构损伤识别程序对模拟的损伤工况进行分析,有效识别出了斜拉桥主梁的损伤位置。并且由于遗传优化算法对参数的类型和数量没有限制,对斜拉桥进行包含不同损伤类型的参数化建模,可以进行结构多类型损伤的识别,因此,可推广至其他复杂桥梁的损伤识别,为同类工程所借鉴。  相似文献   

10.
This paper describes a parallel model-based fault detection algorithm for an electronic parking brake (EPB) system, which consists of an electronic control unit with built-in current sensor and braking force sensor. For the EPB system to supply sufficient parking force to a vehicle, the parking force sensor is of utmost importance. If a fault occurs in this sensor, sufficient parking force may not be supplied, thereby seriously threatening the safety of the vehicle. Thus, a fault detection method is required for the parking force sensor of the EPB system to improve the safety of vehicles. For this purpose, a highly reliable fault detection method is needed to detect abnormal fault signals, which cannot be detected by the existing on-line sensor monitoring fault detection methods. This paper proposes a novel parallel model-based fault detection algorithm for the EPB system, which compares the physical sensor data with the mathematical model, the fuzzy model, and the neural network model at the same time. In order to reduce false alarms, the magnitude of thresholds and the operation counts are changed adaptively. When the proposed parallel model-based fault detection algorithm detects severe failures of the force sensor, it warns the driver in advance to prevent accidents due to the failures. The proposed algorithm is verified by hardware-in-theloop simulations in various situations.  相似文献   

11.
采用载荷分布预分析技术,对某MPV汽车后桥进行了有限元分析,得到了该后桥在静载、制动、转向及扭转4种工况下的应变云图和张量图。通过分析应变云图和张量图,确定了该后桥的关键受载部位及其主应力方向,然后处理标定试验数据,线性回归出后桥载荷一应变的函数关系,并通过实车道路试验结果分析验证了通过有限元分析确定出的后桥应变传感器贴片位置的正确性。  相似文献   

12.
针对当前桥梁基础冲刷诊断和检测方法过程复杂、成本高且受环境影响大等问题,提出一种基于车激动力响应互相关指标的桥梁基础冲刷诊断方法。该方法通过桥墩和桥跨不同测点的纵向加速度响应自由衰减段信号的互相关分析,建立基础冲刷诊断指标体系,实现冲刷定位和均匀性诊断。首先,依据互相关函数幅值向量置信度判据指标进行基础冲刷初判;然后,通过响应互相关函数幅值向量因子变化率向量进行冲刷定位,再根据横桥向互相关函数幅值变化率向量诊断冲刷均匀性;并通过统计评估方法提高诊断精度;最后,结合1座连续梁桥算例进行多种冲刷工况的数值仿真分析,对所提方法的有效性和适用性进行验证。结果表明:该方法能够很好地实现基础冲刷的定位和均匀性诊断,指标具有较高敏感性;同时具有较好的抗噪性能,通过所提出诊断指标体系的综合使用可消除噪声对诊断结果的干扰。该方法具有诊断结果精度高、过程简便易行、无需进行复杂且误差较大的模态识别、允许试验测试参数和条件适量变化等优点,可嵌入常规桥梁荷载试验同步开展,具有很好的工程应用潜力和实用价值。  相似文献   

13.
Because the overall driving environment consists of a complex combination of the traffic Environment, Vehicle, and Driver (EVD), Advanced Driver Assistance Systems (ADAS) must consider not only events from each component of the EVD but also the interactions between them. Although previous researchers focused on the fusion of the states from the EVD (EVD states), they estimated and fused the simple EVD states for a single function system such as the lane change intent analysis. To overcome the current limitations, first, this paper defines the EVD states as driver’s gazing region, time to lane crossing, and time to collision. These states are estimated by enhanced detection and tracking methods from in- and out-of-vehicle vision systems. Second, it proposes a long-term prediction method of the EVD states using a time delayed neural network to fuse these states and a fuzzy inference system to assess the driving situation. When tested with real driving data, our system reduced false environment assessments and provided accurate lane departure, vehicle collision, and visual inattention warning signals.  相似文献   

14.
TPL-PCRUN is a software program for the dynamic interaction simulation of pantograph–catenary systems. In the benchmark, based on the finite element method, the catenary model was built and the pantograph was considered as a three-level spring–damper–mass system. Then, through the contact definition between pantograph and catenary, the coupled model of the pantograph and catenary system was established. The respective dynamic equations of motions were solved by the time integration method. Thus, the simulation results were obtained and submitted for the comparison with the other software. On the other hand, a standard model from EN50318 was established and analysed by TPL-PCRUN. The simulation results by TPL-PCRUN were remarkably consistent with the reference values given by EN50318. It was proved that the results by TPL-PCRUN can be reliable. Recently, the software has been updated and improved. Some new models and algorithms are proposed, including the rigid–flexible hybrid pantograph model, contact definition considering appearance characteristics of the contact surfaces, a fluid–solid coupling algorithm of the pantograph and catenary system, etc.  相似文献   

15.
In the conventional 2D-FFT based target detection method, all range-Doppler cells are computed by FFT (Fast Fourier Transform) and scanned by CA-CFAR (Cell-Averaging Constant False Alarm Rate) detection. This results in high computational complexity and long processing time. In this paper, we developed an automotive 24 GHz BSD (Blind Spot Detection) FMCW (Frequency Modulated Continuous Wave) radar with a low complexity target detection architecture based on a ROI (Region Of Interest) pre-processing scheme. In the real BSD zone, because the number of cars to be detected is limited, the designed method only extracts their velocities corresponding to the range ROIs in which real targets exist. Moreover, the presence probability of vehicles with the same range-bin but different velocities is very low. Thus, in the designed method, some Doppler ROIs cells with a high magnitude are only applied for CA-CFAR detection. This architecture can dramatically reduce the amount of data to be processed compared to that of the conventional 2D FFT based method, resulting in enhanced processing time. We developed a 24 GHz FMCW radar system composed a transceiver, antennas, and signal processing module. The designed algorithm was implemented in a tiny micro-processor of the signal processing module. By implementing our proposed algorithm in the developed 24 GHz FMCW radar system in an anechoic chamber and a real road, we verified that the range and velocity of a car occupying the BSD zone were detected. Compared to that of the conventional method, the reduction ratio of the total processing time was measured to be 52.4 %.  相似文献   

16.
This paper describes the results of a voluntary benchmark initiative concerning the simulation of pantograph–catenary interaction, which was proposed and coordinated by Politecnico di Milano and participated by 10 research institutions established in 9 different countries across Europe and Asia. The aims of the benchmark are to assess the dispersion of results on the same simulation study cases, to demonstrate the accuracy of numerical methodologies and simulation models and to identify the best suited modelling approaches to study pantograph–catenary interaction. One static and three dynamic simulation cases were defined for a non-existing but realistic high-speed pantograph–catenary couple. These cases were run using 10 of the major simulation codes presently in use for the study of pantograph–catenary interaction, and the results are presented and critically discussed here. All input data required to run the study cases are also provided, allowing the use of this benchmark as a term of comparison for other simulation codes.  相似文献   

17.
检测算法解决了现有地磁车位检测中无法排除邻位停车干扰以及所选判断标准无法适应多种车型、停车应用场景的问题.检测算法分析磁偶极子模型,基于矢量运算提取目标车位停车过程产生的地磁扰动矢量,有效排除邻近车位停车过程对目标车位磁场的影响.通过收集大量真实停车产生的地磁扰动信息,统计分析地磁扰动的强度以及方向变化特征,合理选取多级阈值作为算法中车位占用检测的标准,保证检测算法适用于多种车型、停车应用场景.经过3个月实地应用测试,发现检测算法车位占用检测精度达到99.3%,优于强度或者方向单一特征判断算法,并能检测出停车是否规范.研究算法尚未应用于大型客车、货车以及特种车辆车位占用判断.   相似文献   

18.
自动检测是桥梁健康监测的核心和关键技术之一,在自动检测确定出损伤大致范围的基础上,可以通过人工检查进一步确认或排除损伤点,这可大大减轻损伤检测的劳动强度,节约开支。根据小波变换多分辨率分析的特性和恒虚损处理自动检测原理,形成以小波恒虚损处理方法为核心的桥梁损伤自动检测理论。该方法通过拾取环境噪声作为参考噪声,与试验信号分别经相同小波滤波器输出后,形成统计量作为恒虚损率处理的输入参数,进而对奇异信号进行自动检测。该技术不需要无损桥梁相关资料,并可满足实时动态监测的要求。最后通过算例进行了验证。  相似文献   

19.
分析了轮速信号的检测误差,建立了轮速估计的系统状态空间模型,采用了用于轮速估计的自适应卡尔曼滤波算法.利用MATLAB进行了仿真,验证了算法的有效性.实车试验表明,滤波后的轮速信号延时小,响应速度快,平滑效果比较理想,可以用来直接估计车速.  相似文献   

20.
In this article, the static stresses in a catenary and its vibration modes are calculated by establishing the FEM model of the catenary with Euler-Bernoulli beam elements. The mode shapes of the catenary obtained are considered as the generalized variables which are used in the establishment of the motion equations of the catenary system. The physical model of the pantograph is simplified as a multi-body system with mass, stiffness, damping, and friction. On the basis of having derived the coupled motion equations of the pantograph-catenary system, its dynamic behavior is analyzed in detail and the contact force is calculated. Using the contact force as the external moving load of the FEM model of the catenary, the dynamic stress in the catenary is simulated. Through the detailed analysis and calculation, we not only obtain the dynamic stress response at any element of the catenary, but also its frequency responses. As the dynamic stress in the assistant wire is quite large, the influence of its structure on dynamic stress is analyzed and the way to reduce the dynamic stress is suggested. At last, the calculation method of dynamic stress is validated by a test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号