首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Driver models in automobile dynamics application   总被引:1,自引:0,他引:1  
Understanding the driver of an automobile has been attractive to researchers from many different disciplines for more than half a century. On the basis of their acquirements, models of the (human) driver have been developed to better understand, analyse and improve the combined couple of driver and automobile. Due to distinctive demands on the models in accordance with different kinds of applications, a variety of driver models is available. An overview of driver models is given with respect to their application and different methodical modelling approaches. The emphasis is put on the interest of engineers, who generally focus on the automobile (like design and optimization of vehicle components and the overall vehicle dynamics behaviour) by applying their approved (mathematical) methods. Nonetheless, a brief look beyond is added to better complete the view on the involved task of driving and driver modelling for automobile dynamics application.  相似文献   

2.
In this paper, evolving Takagi-Sugeno (eTS) fuzzy driver model is proposed for simultaneous lateral and longitudinal control of a vehicle in a test track closed to traffic. The developed eTS fuzzy driver model can capture human operator’s driving expertise for generating desired steering angle, throttle angle and brake pedal command values by processing only information which can be supplied by the vehicle’s on-board control systems in real time. Apart from other fuzzy rule based (FRB) models requiring human expert knowledge or off-line clustering, the developed eTS driver model can adapt itself automatically, even ‘from scratch’, by an on-line learning process using eTS algorithm while human driver is supervising the vehicle. Proposed eTS fuzzy driver model’s on-line human driver identification capability and autonomous vehicle driving performance were evaluated on real road profiles created by digitizing two different intercity express ways of Turkey in IPG© CarMaker® software. The training and validation simulation results demonstrated that eTS fuzzy driver model can be used in product development phase to speed up different tests via realistic simulations. Furthermore eTS fuzzy driver model has an application potential in the field of autonomous driving.  相似文献   

3.
ABSTRACT

The paper presents an innovative method for a lap time minimisation by using genetic algorithms for a multi objective optimisation of a race driver–vehicle model. The decision variables consist of 16 parameters responsible for actions of a professional driver (e.g. time traces for brake, accelerator and steering wheel) on a race track part with RH corner. Purpose-built, high fidelity, multibody vehicle model (called ‘miMa’) is described by 30 generalised coordinates and 440 parameters, crucial in motorsport. Focus is put on modelling of the tyre tread thermodynamics and its influence on race vehicle dynamics. Numerical example considers a Rear Wheel Drive BMW E36 prepared for track day events. In order to improve the section lap time (by 5%) and corner exit velocity (by 4%) a few different driving strategies are found depending on thermal conditions of semi-slick tyres. The process of the race driver adaptation to initially cold or hot tyres is explained.  相似文献   

4.
This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle–driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle–driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.  相似文献   

5.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

6.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

7.
In recent years the application of driver steering models has extended from the off-line simulation environment to autonomous vehicles research and the support of driver assistance systems. For these new environments there is a need for the model to be adaptive in real time, so the supporting vehicle systems can react to changes in the driver, their driving style, mood and skill. This paper provides a novel means to meet these needs by combining a simple driver model with a single-track vehicle handling model in a parameter estimating filter – in this case, an unscented Kalman filter. Although the steering model is simple, a motion simulator study shows it is capable of characterising a range of driving styles and may also indicate the level of skill of the driver. The resulting filter is also efficient – comfortably operating faster than real time – and it requires only steer and speed measurements from the vehicle in addition to the reference path. Adaptation of the steer model parameters is demonstrated along with robustness of the filter to errors in initial conditions, using data from five test drivers in vehicle tests carried out on the open road.

Abbreviations: ADAS: advanced driver assistance systems; CG: centre of gravity; CAN: controller area network; EKF: extended Kalman filter; GPS: global positioning system; UKF: unscented Kalman filter  相似文献   


8.
为了探寻驾驶人分心判别方法,构建了驾驶人分心状态判别模型。首先设计分心模拟驾驶试验,采集正常驾驶和发送语音信息过程中的驾驶绩效特征和驾驶人眼动特征数据,建立驾驶人分心状态判别指标备选集;其次,采用基因选择算法对备选指标进行筛选,得到29个备选指标的重要度排序;然后,依次选取重要度较高的部分指标作为BP神经网络的输入指标,利用遗传算法(GA)全局搜索的性能优化BP神经网络的初始权值和阈值,将优化后的GA-BP神经网络作为弱分类器,再将多个弱分类器组合成Adaboost强分类器,建立基于Adaboost-GA-BP组合算法的驾驶人分心状态判别模型;最后,利用模拟驾驶器试验平台采集的数据计算不同判别指标数量下模型的性能,从而确定最优判别指标,并对模型进行验证和评价。结果表明:模型最优判别指标为重要度排序中前14个指标;模型能够准确识别驾驶人分心状态,判别精度为95.09%;与BP神经网络算法、GA-BP神经网络算法和Adaboost-BP神经网络算法相比,Adaboost-GA-BP组合算法在准确率、精准率、召回率、F1值和ROC曲线等模型性能方面均最优。建立的模型能够有效判别驾驶人分心状态,可为驾驶人分心预警系统和分心控制策略提供依据。  相似文献   

9.
采用视频采集方式和神经网络方法实现了驾驶员疲劳驾驶的非接触式监测。应用车头前端和车厢内部双路视频摄像头分别采集车辆相对于车道线的行驶轨迹和驾驶员的睁闭眼状态,应用Radon变换提取5 s内车头与车道线间的最大和最小偏离、相邻2帧间车头与车道线的最大角度变化量和平均角度差,应用AdaBoost算法提取驾驶员眼睛闭合帧数比例,并将上述各参数作为RBF神经网络的输入来实现驾驶员疲劳状态的动态监测,实验数据表明监测效果良好。  相似文献   

10.
The minimum lap time optimal control problem has been solved for a go-kart model. The symbolic algebra software Maple has been used to derive equations of motion and an indirect method has been adopted to solve the optimal control problem. Simulation has been successfully performed on a full track lap with a multibody model endowed with seven degrees of freedom. Geometrical and mechanical characteristics of a real kart have been measured by a lab test to feed the mathematical model. Telemetry recorded in an entire lap by a professional driver has been compared to simulation results in order to validate the model. After the reliability of the optimal control model was proved, the simulation has been used to study the peculiar dynamics of go-karts and focus to tyre slippage dynamics, which is highly affected by the lack of differential.  相似文献   

11.
利用驾驶机器人替代人类驾驶员在危险条件和恶劣环境下进行汽车试验已成为汽车工业发展的趋势。分析汽车驾驶机器人系统的研究难点,介绍国内外的发展现状和研究成果,并在此基础上对东南大学自主研发的汽车驾驶机器人与国外驾驶机器人进行了对比分析,给出驾驶机器人用于排放耐久性试验的实车试验结果,验证了驾驶机器人控制性能的有效性,最后对汽车驾驶机器人的发展趋势进行了展望。  相似文献   

12.
An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver’s functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.  相似文献   

13.
系统回顾了早期汽车驾驶人模型的发展与演变,根据驾驶人模型的设计理论和研究方法,将驾驶人模型分为方向控制驾驶人模型、STI模型、预期开环控制模型、双模式模型以及其他种类的模型,其中方向控制驾驶人模型又可分为预瞄驾驶人模型和线性状态变量控制模型。综述了上述各类汽车驾驶人模型的研究过程,分析论述了早期汽车驾驶人模型的结构特点,总结了各类驾驶人模型存在的不足,提出了驾驶人模型发展的新方向。  相似文献   

14.
This paper describes the examination of the vehicle dynamics and stability of four-wheeled forklift trucks (FLTs) in cornering situations. Cornering at excessive speed is one major reason for fatal accidents with forklifts caused by lateral tipover. In order to increase the lateral stability of this kind of working machinery, the influence of certain important design properties has been studied using an appropriate vehicle simulation model and a driving simulator. The simulation model is based on a multi-body system approach and includes submodels for the propulsion system and the tyres. The driving behaviour of the operator has not been modelled. Instead, a driving simulator has been built up and a real human driver was employed for ensuring adequate and realistic model input. As there have not been any suitable standardised test manoeuvres available for FLTs, a new driving test has been developed to assess the lateral stability. This test resembles the well-known J turn/Fishhook turn, but includes a more dynamic counter-steering action. Furthermore, the dimensions of the test track are defined. Therefore, the test is better adapted to the driving dynamics of forklifts and reflects the real driver behaviour more closely. Finally, a parametrical study has been performed, examining the influence of certain important technical properties of the truck such as the maximum speed, the position of centre of gravity, rear axle design features and tyre properties. The results of this study may lead to a better understanding of the vehicle dynamics of forklifts and facilitate goal-oriented design improvements.  相似文献   

15.
The classic two-degree-of-freedom yaw-plane or ‘bicycle’ vehicle model is augmented with two additional states to describe lane-keeping behaviour and further augmented with an additional control input to steer the rear axle. A simple driver model is hypothesised where the driver closes a loop on a projected lateral lane position. The driver can select the preview distance to compensate driver/vehicle dynamics, consistent with the ‘cross-over’ model found in the literature. A rear axle steer control law is found to be a function of the front axle steering input and vehicle speed that exhibits stability similar to a positive-real system, while at the same time improving the ability of the driver/vehicle system to track a complex curved lane and improving steady-state manoeuvrability. The theoretically derived control law bears similarity to practical embodiments allowing a deeper understanding of the functional value of steering a rear axle.  相似文献   

16.
简述当前开展面向安全预警的机动车驾驶意图研究的目的和意义.分析国内外研究现状,得出从驾驶员行为及驾驶动作序列角度开展驾驶意图研究的可行性和有效性,同时介绍了 2种基于概率与数理统计的机动车驾驶意图建模方法.结合驾驶员在直线封闭路段实施驾驶行为特征,阐述使用隐马尔科夫模型(HMM)理论建立驾驶意图模型的步骤以及模型参数学习和系统在线优化算法等内容.对驾驶意图模型网络结构、动态性能方面相关研究方向进行展望.  相似文献   

17.
为了揭示驾驶风格对驾驶行为的影响规律,进而提取表征驾驶风格的特征参数,对不同风格驾驶人在感知层和操作层的驾驶行为数据进行了量化分析。首先,基于驾驶行为问卷对18名中国非职业驾驶人进行了驾驶风格问卷调查,并采用主成分分析、K-均值聚类等方法将被试驾驶人分为谨慎型、正常型和激进型3种类型。接着,被试驾驶人在搭载了SmartEye眼动仪的驾驶模拟器上开展了高速公路行车环境下的驾驶试验,同步采集了感知层的视觉特性参数和操作层的驾驶绩效参数,并采用判断抽样的方式将驾驶样本按照驾驶风格和驾驶模式(换道意图和车道保持)进行了划分,共选取了810组有效样本。最后,采用方差分析法分析了不同风格驾驶人在不同驾驶模式下的注视行为、扫视行为、横向控制特性、纵向控制特性方面相关参数的差异显著性,并提取了不同风格间存在显著差异的参数作为表征驾驶风格的特征参数。研究结果表明:驾驶风格越激进,驾驶人对周围环境关注越少,对车辆的横向控制稳定性越差,急加速和急减速行为发生的频次越高;不同风格驾驶人在意图时窗内对后视镜的注视次数(p=0.002)、方向盘转角熵值(p=0.04)、加速踏板开度(p=0.01)、制动踏板开度(p=0.02)这4个参数的差异均较为显著,因此可作为表征驾驶风格的特征参数。  相似文献   

18.
车辆转弯制动横向轨迹控制驾驶员模型研究   总被引:1,自引:1,他引:0  
为了较为真实地反映车辆转弯制动工况,建立了含Pacejka"魔术公式"非线性联合工况轮胎模型的4轮8自由度车辆系统模型,并基于预瞄跟随理论、加速度反馈控制和模糊PID控制技术建立了车辆转弯制动横向轨迹控制驾驶员模型。针对不同初始速度和制动强度,利用MATLAB/Simulink进行了横向轨迹控制仿真分析。分析结果表明,驾驶员控制模型能很好地跟踪横向轨迹,模型的可行性和有效性得到验证,同时不同仿真条件下结果的一致性也说明该控制方法具有较强的自适应能力和鲁棒性,为进一步研究复杂工况下的驾驶员模型及横向轨迹控制提供了一条可行的途径。  相似文献   

19.
孔繁森  邹青  杜春梅 《汽车工程》2004,26(4):430-434
使用优化Mask分析的方法来模拟驾驶员根据道路情况预测驾车速度的驾驶行为。探讨了使用优化Mask分析建立驾驶员模型的可行性。  相似文献   

20.
This paper presents an investigation about influencing the driver's behaviour intuitively by means of modified steering feel. For a rollover indication through haptic feedback a model was developed and tested that returned a warning to the driver about too high vehicle speed. This was realised by modifying the experienced steering wheel torque as a function of the lateral acceleration. The hypothesis for this work was that drivers of heavy vehicles will perform with more margin of safety to the rollover threshold if the steering feel is altered by means of decreased or additionally increased steering wheel torque at high lateral acceleration. Therefore, the model was implemented in a test truck with active steering with torque overlay and used for a track test. Thirty-three drivers took part in the investigation that showed, depending on the parameter setting, a significant decrease of lateral acceleration while cornering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号