首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active steering control in the form of secondary yaw control (SYC) and actuated wheelset yaw (AWY) have been in prototype development. This paper presents a new active steering bogie design, actuated yaw force steering (AY-FS), that is able to steer under high traction loads in tight curves. The AY-FS bogie design is compared with the AWY design. The steering performance AWY under high traction loads has not been previously reported. This paper examines five control methods, three for AWY and two for AY-FS bogies and assesses the traction curving and stability control performance of the alternative designs and control methods compared with each other and to passive steering bogie designs. The curving performance results showed considerable advantage in the proposed AY-FS bogies over the AWY. It was shown that control must be applied to both the yaw angle and the steering angle of the bogie to achieve the best traction steering performance which was not possible with the AWY bogies. The proposed new bogie designs of AY-FS overall give better traction curving and stability performance than the AWY designs.  相似文献   

2.
A Qualitative Analysis of the Dynamics of Self-Steering Locomotive Trucks   总被引:1,自引:0,他引:1  
The primary purpose of this study is to provide a qualitative analysis of the dynamics of the self-steering trucks that are commonly used for freight locomotives - namely, EMD's Radial Truck and GE's Steerable Truck - on improving curving performance and increasing adhesion in curves. Although there exists a number of anecdotal statements on the ability of steerable trucks to reduce curving forces and increase adhesion in curves, to the best of our knowledge, there exists no study that provides a qualitative or quantitative analysis of these features of steerable trucks. Two aspects of locomotive trucks are essential for their ability to deliver small curving forces and high adhesion in curves. First, the ability to allow the axles to yaw sufficiently relative to the truck frames, such that they can hold a small angle of attack with the rail. Second, providing sufficiently large longitudinal stiffness between the end axles and the axles and truck frame, to accommodate high adhesions. An equivalent stiffness analysis is used to show that the two steerable trucks that are considered for this study are far superior to conventional, three-axle, straight trucks in providing both a smaller angle of attack and a higher longitudinal stiffness for better curving and adhesion characteristics. The qualitative analysis of this study agrees with the experience the railroads have had with their self-steering trucks. The findings of this study indicate that self-steering trucks can result in lower lateral forces, accommodate tighter curves, and deliver higher adhesion in curves; without lowering the critical hunting speed of the locomotive. The results further show that the steering mechanism stiffness can have a large effect on the lateral, longitudinal, and yaw stiffness between the end axles; therefore, significantly lowering curving forces, and increasing adhesion and critical hunting speed of the truck.  相似文献   

3.
The main task for heavy haul railway operators is to reduce the cost of exported minerals and enhance the long-term viability of rail transport operations through increasing productivity by running longer and heavier trains. The common opinion is that this is achievable by means of implementation of high adhesion locomotives with advanced AC traction technologies. Modern AC high adhesion locomotives are very complex mechatronic systems and can be designed with two alternative traction topologies of either bogie or individual axle controls. This paper describes a modelling approach for these two types of AC traction systems with the application of an advanced co-simulation methodology, where an electrical system and a traction algorithm are modelled in Matlab/Simulink, and a mechanical system is modelled in a multibody software package. Although the paper concentrates on the analysis of the functioning for these two types of traction control systems, the choice of reference slip values also has an influence on the performance of both systems. All these design variations and issues have been simulated for various adhesion conditions at the wheel–rail interface and their influence on the high traction performance of a locomotive equipped with two three-axle bogies has been discussed.  相似文献   

4.
The stability of four bogie configurations is considered for a range of friction coefficients and traction ratios. The basis of comparison is the vehicle with conventional solid-axle railway wheelsets mounted in bogies with relatively stiff plan-view suspension. As improved performance of the wheelset in guidance can be achieved with various forms of passive and active guidance, bogies with yaw relaxation, with conventional wheelsets and active stabilisation and with independent wheels and active guidance are considered. Stability of each of these configurations is studied using a full nonlinear solution of the equations of motion. It is shown that the stability of the passive bogie configurations is very robust in the presence of traction and braking and variations of friction and that this is also true for an actively guided bogie with independent wheels. However, for a bogie with conventional wheelsets and active stabilisation, creep saturation effects can reduce stability significantly.  相似文献   

5.
The primary purpose of this study is to provide a qualitative analysis of the dynamics of the self-steering trucks that are commonly used for freight locomotives – namely, EMD's Radial Truck and GE's Steerable Truck – on improving curving performance and increasing adhesion in curves. Although there exists a number of anecdotal statements on the ability of steerable trucks to reduce curving forces and increase adhesion in curves, to the best of our knowledge, there exists no study that provides a qualitative or quantitative analysis of these features of steerable trucks. Two aspects of locomotive trucks are essential for their ability to deliver small curving forces and high adhesion in curves. First, the ability to allow the axles to yaw sufficiently relative to the truck frames, such that they can hold a small angle of attack with the rail. Second, providing sufficiently large longitudinal stiffness between the end axles and the axles and truck frame, to accommodate high adhesions. An equivalent stiffness analysis is used to show that the two steerable trucks that are considered for this study are far superior to conventional, three-axle, straight trucks in providing both a smaller angle of attack and a higher longitudinal stiffness for better curving and adhesion characteristics. The qualitative analysis of this study agrees with the experience the railroads have had with their self-steering trucks. The findings of this study indicate that self-steering trucks can result in lower lateral forces, accommodate tighter curves, and deliver higher adhesion in curves; without lowering the critical hunting speed of the locomotive. The results further show that the steering mechanism stiffness can have a large effect on the lateral, longitudinal, and yaw stiffness between the end axles; therefore, significantly lowering curving forces, and increasing adhesion and critical hunting speed of the truck.  相似文献   

6.
SUMMARY

The critical or hunting speed of solid axle rail vehicles is known to be a strong function of primary suspension stiffness, wheel/rail profile geometry (conicity and gravitational stiffness), wheel/rail friction forces (creep coefficients), bogie/carbody inertia properties, and secondary suspension design. This paper deals with the problem of maximizing the critical speed through design of the primary and secondary suspension but with control only over the range of wheel/rail geometry and friction characteristics. For example, the conicity may varie from .05 to .3 and the linear creep coefficients from 25% to 100% of the predicted Kalker values.

It is shown that the maximum critical speed is greatly limited by the wheel/rail geometry and friction variations. It is also shown that, when lateral curving and ride quality are considered, the best design approach is to select an intermediate primary longitudinal stiffness, to limit the lowest value of conicity (e.g. to .1 or .2) by wheel profile redesign, increasing the secondary yaw damping value (yaw relaxation) and optimizing the primary and secondary lateral stiffness.  相似文献   

7.
This paper presents the locomotive traction controller performance with respect to the track wear under different operation conditions. In particular, an investigation into the dynamic response of a locomotive under changing wheel–rail friction conditions is performed with an aim to determine the effect of controller setting on track wear. Simulation using a full-scale longitudinal–vertical locomotive dynamic model shows that the appropriately designed creep threshold, controller, settings can effectively maintain a high tractive effort while avoiding excessive rail damage due to wear, especially during acceleration under low speed.  相似文献   

8.
The critical or hunting speed of solid axle rail vehicles is known to be a strong function of primary suspension stiffness, wheel/rail profile geometry (conicity and gravitational stiffness), wheel/rail friction forces (creep coefficients), bogie/carbody inertia properties, and secondary suspension design. This paper deals with the problem of maximizing the critical speed through design of the primary and secondary suspension but with control only over the range of wheel/rail geometry and friction characteristics. For example, the conicity may varie from .05 to .3 and the linear creep coefficients from 25% to 100% of the predicted Kalker values.

It is shown that the maximum critical speed is greatly limited by the wheel/rail geometry and friction variations. It is also shown that, when lateral curving and ride quality are considered, the best design approach is to select an intermediate primary longitudinal stiffness, to limit the lowest value of conicity (e.g. to .1 or .2) by wheel profile redesign, increasing the secondary yaw damping value (yaw relaxation) and optimizing the primary and secondary lateral stiffness.  相似文献   

9.
To investigate the stability mechanism of a type of heavy-haul coupler with arc surface contact, the force states of coupler were analysed at different yaw angles according to the friction circle theory and the structural characteristics of this coupler were summarised. A multi-body dynamics model with four heavy-haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability was tested in order to investigate the effect of relevant parameters on the coupler stability. The results show that this coupler exhibits the self-stabilisation and less lateral force at a small yaw angle. The yaw angle of force line is less than the actual coupler yaw angle which reduces the lateral force and the critical instability. An increase in the friction coefficient of the arc contact surfaces can improve the stability of couplers. The friction coefficient needs to be increased with the increase in the maximum coupler longitudinal compressive force. The stability of couplers is significantly enhanced by increasing the secondary suspension stiffness and reducing the clearance of the lateral stopper of the locomotives. When the maximum coupler compressive force reaches 2500 kN, the required friction coefficient reduces from 0.6 to 0.35, which notably lowers the derailment risk caused by the coupler. The critical instability angle of the coupler mainly depends on the arc contact friction coefficient. When the friction coefficient is 0.3, the critical instability angle was 4–4.5°. The simulation results are consistent with the locomotive line tests. These studies establish meaningful improvements for the stability of couplers and match the heavy-haul locomotive with its suspension parameters.  相似文献   

10.
This article compares the dynamic behaviour of different configurations of radial and conventional two-axle bogies. In general, the design parameters for a better curve negotiation are not compatible with those for good stability. As the main target of this article is to compare the curving performances of different bogies under the same design basis, several bogie configurations with the same level of stability, obtained by choosing proper primary suspension stiffnesses, have been used. The comparison includes a conventional bogie and three radial bogies with differing self-steering and forced-steering principles in three different passenger services: High Speed, Regional and Mass Transit. The analysis has been concentrated on parameters such as stability, lateral wheel-track forces in curve and wheel wear indices. The results show that the radial bogie configurations studied do not make significant contributions in general applications with regard to a conventional bogie. It is only under specific running conditions and types of service that some radial bogie configurations provide advantages with respect to the conventional bogie.  相似文献   

11.
This article compares the dynamic behaviour of different configurations of radial and conventional two-axle bogies. In general, the design parameters for a better curve negotiation are not compatible with those for good stability. As the main target of this article is to compare the curving performances of different bogies under the same design basis, several bogie configurations with the same level of stability, obtained by choosing proper primary suspension stiffnesses, have been used. The comparison includes a conventional bogie and three radial bogies with differing self-steering and forced-steering principles in three different passenger services: High Speed, Regional and Mass Transit. The analysis has been concentrated on parameters such as stability, lateral wheel-track forces in curve and wheel wear indices. The results show that the radial bogie configurations studied do not make significant contributions in general applications with regard to a conventional bogie. It is only under specific running conditions and types of service that some radial bogie configurations provide advantages with respect to the conventional bogie.  相似文献   

12.
The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   

13.
SUMMARY

The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   

14.
An innovative structure for a heavy haul coupler with an arc surface contact and restoring bumpstop is proposed. This coupler has a small lateral force at a small yaw angle and a limitable yaw angle to ensure an allowable coupler lateral force under intense compressive force. The main structural characteristic of the combined contact coupler is a lateral movable follower with an appropriate friction coefficient of 0.06–0.08 and a slide block with a single freedom of longitudinal movement. In order to verify and simulate the performances, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and wheel set lateral forces were tested in order to investigate the effect of relevant parameters on the coupler performances. The combined contact coupler is suitable for heavy haul train for a good dynamic performance.  相似文献   

15.
The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992–1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7–22] adapting his previously published algorithm [Polach O. A fast wheel–rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728–739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1–13]. However, the Fastsim code has some limitations which do not allow modelling the creep force – creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.  相似文献   

16.
There are a number of theoretical and practical techniques to compute rail vehicle wheel wear. For instance, the Archard equation is a well-known tool to determine the worn volume in sliding contact, as a function of normal load, sliding distance and the surface hardness. Of course, the wear coefficient (called K) used in this equation to differentiate the wear models implicitly comprises the conditions that govern the contact surface. Two situations can be taken into account when considering a sliding contact in a rail vehicle wheels, particularly along a curved track: (i) when the radial force prevails the lateral tangential force, which is mainly the frictional force but before flanging and (ii) during flange contact. Also, the Archard equation is employed within the tread and flange regions separately, both the regions being of interest in this paper. A number of approaches are then used to find the distance slid. The authors compare the field test results and the outcome of the analytical approaches. When the wheel wear results acquired from the two test bogies on Iranian Railways, all technical (rigid frame bogies with new assemblies and components) and operational items were identical, except for changing the bogie orientation in the second test trial for a short period. Good agreement was found between the analytical and practical investigations.  相似文献   

17.
A method for detecting wheel slip/slide and re-adhesion control of AC traction motors in railway applications is presented in this paper. This enables a better utilisation of available adhesion and could also reduce wheel wear by reducing high creep values. With this method, the wheel–rail (roller) creepage, creep force and friction coefficient can be indirectly detected and estimated by measuring the voltage, current and speed of the AC traction motor and using an extended Kalman filter. The re-adhesion controller is designed to regulate the motor torque command according to the maximum available adhesion based on the estimated results. Simulations under different friction coefficients are carried out to test the proposed method.  相似文献   

18.
A robust controller is designed for active steering of a high speed train bogie with solid axle wheel sets to reduce track irregularity effects on the vehicle’s dynamics and improve stability and curving performance. A half-car railway vehicle model with seven degrees of freedom equipped with practical accelerometers and angular velocity sensors is considered for the H control design. The controller is robust against the wheel/rail contact parameter variations. Field measurement data are used as the track irregularities in simulations. The control force is applied to the vehicle model via ball-screw electromechanical actuators. To compensate the actuator dynamics, the time delay is identified online and is used in a second-order polynomial extrapolation carried out to predict and modify the control command to the actuator. The performance of the proposed controller and actuator dynamics compensation technique are examined on a one-car railway vehicle model with realistic structural parameters and nonlinear wheel and rail profiles. The results showed that for the case of nonlinear wheel and rail profiles significant improvements in the active control performance can be achieved using the proposed compensation technique.  相似文献   

19.
Traction control is a very important aspect in railway vehicle dynamics. Its optimisation allows improvement of the performance of a locomotive by working close to the limit of adhesion. On the other hand, in case the adhesion limit is surpassed, the wheels are subjected to heavy wear and there is also a big risk that vibrations in the traction occur. Similar considerations can be made in the case of braking. The development and optimisation of a traction/braking control algorithm is a complex activity, because it is usually performed on a real vehicle on the track, where many uncertainties are present due to environmental conditions and vehicle characteristics. This work shows the use of a scaled roller rig to develop and optimise a traction control algorithm on a single wheelset. Measurements performed on the wheelset are used to estimate the optimal adhesion forces by means of a wheel/rail contact algorithm executed in real time. This allows application of the optimal adhesion force.  相似文献   

20.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号