首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
斜拉桥在考虑风效应时的车-桥耦合振动   总被引:3,自引:0,他引:3  
以芜湖长江大桥为算例,考虑风荷载作用于列车和桥梁上,对ICE高速列车以200km/h的速度通过桥梁时,计算了与列车运行安全性及旅客乘座舒适度相关的指标.风荷载考虑为脉动的,按Simiu谱用MonteCarlo法模拟脉动风速,结合由风洞试验测定的空气动力参数,计算了作用于列车和桥梁上的自然风荷载.根据结构动力学理论,建立了机车(车辆)的动力学方程;建立了桥梁的有限元振动方程;桥上轨道不平顺按6级线路(最好的线路)模拟.计算结果表明,对芜湖长江大桥,桥上允许行车的桥面处横桥向最大风速应小于30m/s.  相似文献   

2.
风荷载-列车-大跨度桥梁系统非线性耦合振动分析   总被引:1,自引:0,他引:1  
考虑桥梁结构的几何非线性因素,建立了风-列车-桥梁系统耦合振动分析模型.以某大跨度钢桁梁桥为例,计算了静风及脉动风荷载的不同作用效应、风速及车速变化对桥梁位移极值的影响及桥梁几何非线性因素对结构分析的影响.结果表明,进行车桥耦合振动分析时要综合考虑风荷载的动力作用,风速及车速变化对桥梁位移极值均有较大影响,桥梁的线性及非线性位移时程曲线存在明显区别.  相似文献   

3.
作用在车—桥系统上风荷载的风洞试验研究   总被引:5,自引:1,他引:4  
以芜湖长江大桥及高速列车为例,对车-桥系统进行了节段模型风洞试验研究。通过试验确定了桥上有车时,桥本身的气动力参数,以及列车在桥上时,列车本身的气动力参数,用计算机模拟了列车与桥梁所受的风荷载。所得的风荷载加到车-桥系统动力学方程中,可以计算风荷载对车-桥系统的动力作用  相似文献   

4.
列车—斜拉桥系统在风载作用下的动力响应   总被引:3,自引:0,他引:3  
主要研究脉动风与列车荷无同时作用下斜拉桥的横向振动问题,首先建立了横风作用下并考虑了轨道不平顺和车辆蛇行的车桥系统动力分析模型,推导了体系平衡方程组,编制了有关的计算机程序;根据Davenport风速功率谱模拟产生脉动风样本,并将其作为系统的随机激励,在计算机上模拟列车过桥的全过程,按不同车速计算了桥梁跨中和桥塔的横向位移、加速度以及桥上车辆的横向振动和加速率响应,以一铁路斜拉桥为例,着重讨论了在  相似文献   

5.
采用谱解法模拟脉动风荷载场,根据风洞试验测得的车辆的空气动力参数,计算出作用在车辆侧面的风荷载;将风荷载加到人-车-路耦合振动系统方程中,建立起考虑其影响的系统耦合振动方程;采用人体加权竖向振动加速度均方根值对车辆乘坐舒适度进行评价,并对模拟风速场及侧向风速大小对车辆乘坐舒适度的影响进行讨论.分析表明:静态风减小了人体、车辆振动加速度的最大值,但对其加速度均方根值没有影响;脉动风作用下人体振动加速度最大值略有变化,但均方根值却增大较多;侧向风荷载场对路面结构的振动几乎没有影响;平整路面下乘坐者出现不舒适感的临界风速为55m/s,A级不平整路面出现不舒适感的临界值为15m/s.  相似文献   

6.
风荷载影响大跨度连续刚构桥梁周围的空气流动。为避免桥梁发生颤振,需计算桥梁的风荷载。通过涡旋诱发振荡确定起始风速,考虑截面特性计算得缓冲风荷载,最终建立了以耿贝尔极值分布推导桥梁风荷载的方法。还利用Matlab编制了程序,模拟了桥梁风速时程,计算了桥梁在风荷载下的效应,分析了风荷载对桥梁振动及稳定性的影响。  相似文献   

7.
为研究高速列车在强横风作用下通过曲线桥梁的安全性问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用所建立的模型计算了不同风速、不同车速、不同线路条件下作用于车体上的气动载荷,并且以脱轨系数、轮重减载率、倾覆系数、轮轴横向力和轮轨垂向力为运行安全性指标,分析了高速列车通过曲线桥梁的运行安全性.研究表明:横风下高速列车通过曲线桥梁时,列车的安全性受气动力和曲线超高双重影响.在低风速、低车速时,曲线超高对于列车安全性的影响起主要作用;随着风速变大,气动力对于列车安全性的影响远大于曲线过超高对于列车安全性的影响.在各工况中,当风从曲线桥梁的内侧吹向外侧,并且高速列车运行在曲线桥梁的迎风侧时,高速列车的最大安全风速最小,因此,在校核横风下高速列车过曲线桥梁安全性时,可以直接选用该工况来校核列车的安全性.  相似文献   

8.
为了研究山区非平稳强风下大跨悬索桥静风及抖振响应,以云南普立大桥为工程背景,基于该桥址处实测风速样本,对大跨桥梁展开风致响应分析.首先,根据实测风速样本确定了时变平均风并且估计了脉动风谱.然后,在考虑了恒载结构初始内力状态下进行了非线性静风响应分析.最后,采用虚拟激励法分别针对实测风谱与规范风谱对该桥进行了抖振响应研究.计算结果表明,该大桥的抖振以竖向振动为主,并且其位移响应比静风突出; 10 min常值平均风会低估该桥的静风响应;由规范风谱得到的主梁抖振响应偏于不安全.研究结论可为同类山区大跨桥梁风致静力及抖振响应研究提供参考.   相似文献   

9.
以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS参数化设计语言(APDL)编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.  相似文献   

10.
机车—桁架桥梁耦合振动研究   总被引:4,自引:0,他引:4  
建立了轮对和钢轨之间弹性联接33个自由度的机车车辆动力学模型,采用有限元法分析计算了列车荷载作用下某铁路双线钢桁桥的动力响应。采用空间梁单元建立了桁架桥的振动方程。根据随机振动理论计算了当列车过桥时,车-桥耦合振动系统的空间动力响应,并与实测结果进行了比较,比较表明,采用弹性联接横型比密贴模型的计算结果更接近于实测值。  相似文献   

11.
以列车移动荷载作用下曲线上桥梁系统研究对象,采用车-桥系统的空间振动分析模型,以一箱型箱支梁为例,用计算机模拟列车过桥的全过程,计算了列车荷载作用下曲线桥的动力响应、列车的脱轨系数、轮重减载率,列车运行平稳性指标,并与直线桥作了比较,研究结果与工程实际有一定的参考价值。  相似文献   

12.
侧风作用下桥上通行车辆因同时受到轮胎侧偏特性产生的侧偏力作用和桥梁振动响应的影响,驾驶员和乘客极易遭受行车舒适性问题,根据Dugoff非线性轮胎模型在车轮横向振动方程中引入轮胎侧偏力表达式,建立了考虑轮胎侧偏特性的车辆动力学分析模型.考虑自然风、车辆和桥梁三者之间的相互作用,构建了风-汽车-桥梁耦合振动分析框架,分析了不同影响因素下轮胎侧偏特性对车辆行驶舒适性评价的影响.结果表明:考虑轮胎侧偏特性后,车辆的横向振动状态得到了一定程度的改善,在风速25m/s及路面等级非常好的情况下,考虑轮胎侧偏特性时车辆行车舒适程度提高了20.6%.   相似文献   

13.
侧风环境下列车高速通过站台的流固耦合振动   总被引:1,自引:0,他引:1  
为了考察侧风环境下列车能否临靠站台高速安全通过,采用列车空气动力学和列车系统动力学相结合的方法,通过侧风与列车的流固振动分析获得列车姿态的变化;考虑侧风作用下,列车的姿态变化和轨道几何不平顺的影响,分析了侧风环境下,列车临靠站台高速通过时的气动响应.计算结果表明,与无风环境尾车易与站台碰撞不同,在6 m/s侧风环境下,当列车以350 km/h的速度临靠站台通过时,车头前端是离站台最近的位置.  相似文献   

14.
为了研究风场中大跨度双层钢桁梁悬索桥的车桥耦合振动性能,以泸州市长江二桥(桥东)为工程背景,基于风-车-桥空间耦合动力学分析理论,综合考虑风荷载的模拟、桥上车流的确定、车辆振动分析模型的建立等多个方面开展了较为系统的研究,以期望正确评价风-车-桥耦合体系中桥梁与车辆的振动性能。研究表明:风-车-桥体系中位于风场内的桥梁在其横向变位上主要受风荷载的影响;风场中桥梁在其竖向的响应反映了车辆和风荷载的耦合作用。  相似文献   

15.
列车由隧道驶上桥梁时会承受突变的风荷载,列车的响应发生突变,导致列车的行车安全受到威胁. 以某客运专线桥隧过渡段为研究背景,通过计算流体动力学 (CFD) 数值模拟和车桥耦合振动分析,计算了CRH3型列车通过桥隧过渡段时受到的气动力及车辆响应;对比分析了头车、中间车及尾车的气动力及列车响应,研究了大风攻角对列车气动力及行车响应的影响,探讨了最不利的安全指标. 研究结果表明:越靠近车头的车体,气动力突变与列车响应越大;相比0° 攻角,正风攻角对行车相对有利,+7° 的风攻角下列车受到的气动阻力和力矩减小了约10%;负风攻角会增大列车的气动力突变效应和行车响应,?7° 风攻角下列车受到的气动阻力和力矩增加了约10%;风速在22.5 m/s以下时,CRH3列车能够以200 km/h的车速安全通过桥隧过渡段;20 m/s风速时,车速在325 km/h以下时列车能够安全通过桥隧过渡段;随着车速与风速的增加,轮轴横向力是首先超限的安全性指标.   相似文献   

16.
为了预测地铁隧道内由活塞风效应引起的广告牌表面风荷载的时变特性,采用计算流体动力学(computational fluid dynamics,CFD)开展了活塞风三维非稳态流动模拟. 基于用户自定义函数(user-defined functions,UDF)定义了列车运行控制与动网格控制程序,搭建了精度更高的活塞风模拟方法,并结合以往的实验与仿真,验证了方法的合理性. 在此基础上根据实际隧道断面建立了全尺寸动网格模型,考虑了不同运行速度下由列车运动引起的流场变化,重点关注地铁隧道内不同位置广告牌表面的静压变化. 研究结果表明,列车经过广告牌时表面静压由正变负,速度增加时会导致广告牌表面的静压显著增大,对于80 km/h的工况静压幅值能超过500 Pa;对于部分以120 km/h运行的地铁,静压幅值超过1 kPa.   相似文献   

17.
地震作用下高速列车-线路-桥梁系统动力响应   总被引:4,自引:0,他引:4  
为分析地震对高速列车通过桥梁时行车安全性的影响,基于高速铁路列车-线路-桥梁动力相互作用理论,建立了考虑地震输入的高速列车-线路-桥梁耦合动力学模型.以跨度32 m的简支箱梁桥和双块式无砟轨道为研究对象,对地震作用下高速列车通过桥梁时系统的动力响应进行了数值计算.结果表明:地震对高速列车-线路-桥梁系统动力响应的影响明显,对桥梁横向振动响应的影响大于对竖向振动响应的影响;地震会降低高速列车通过桥梁时的行车安全性和运行平稳性———在水平1.0 m/s2,竖向0.5 m/s2的规格化El Centro地震波作用下,当列车运行速度超过250 km/h时,轮重减载率超过了安全限值;当列车运行速度达300 km/h时,脱轨系数超过了安全限值.因此,评判地震作用下高速列车通过桥梁时的行车安全性,应考虑行车速度的影响.  相似文献   

18.
为探讨不同列车速度下矮塔斜拉桥斜拉索振动与桥梁整体振动之间的相关性,基于列车-线路-桥梁耦合振动理论与动力学模型,以某主跨115 m+95 m的铁路矮塔斜拉桥为工程背景,考虑斜拉索与桥梁整体结构之间的相互作用,通过数值积分得到梁体、桥塔振动响应以及斜拉索局部振动响应.结果表明:列车荷载作用下索梁振动相关性问题实质上是一个能量传递过程,当拉索端点位移激励频率与其自振频率接近时,能量易于在索梁间传递;当列车以225~350 km/h的设计时速通过桥梁、列车荷载的激励频率与斜拉索自振频率接近时,斜拉索在外激励作用下会产生共振,但共振幅值不大(斜拉索局部振动幅值小于3 mm).   相似文献   

19.
为研究风荷载作用下高层建筑动力响应对其顺风向等效静力风荷载的影响,基于结构风致响应动力学理论、脉动风速功率谱密度函数与相干函数的维纳辛钦关系及脉动风速准定常关系,采用随机振动振型分解方法对高层建筑的风致响应进行了研究. 首先,对高层建筑的平均风响应、背景风响应和共振风响应进行了理论分析,并推导出了沿结构高度分布的高层建筑顺风向等效静力风荷载理论计算公式;其次,通过对理论公式中各参数对计算结果的影响进行分析,提出了便于实际应用的高层建筑顺风向等效静力风荷载简化计算方法;最后,设计了4个典型高层建筑算例模型,并与阵风荷载因子法(gust load factor method,GLF)和惯性风荷载法(inertial wind load method,IWL )进行对比,研究了本文方法的可靠性和有效性. 研究结果表明:当结构高度小于250 m时,3种方法所计算出的分布风力、剪力响应和弯矩响应偏差要大一些,GLF法计算结果最大,IWL法的计算结果最小,本文方法介于二者之间;当结构高度大于350 m时,分布风力的偏差在15%以内,对于剪力响应和弯矩响应的偏差在10%以内;本文方法与IWL法在剪力响应方面的差异率在–1%~18%之间,与GLF法的差异率在–12%~5%之间;本文方法与IWL法在弯矩响应方面的差异率在–6%~10%之间,与GLF法的差异率在–16%~5%之间.   相似文献   

20.
架设在深切峡谷中的大跨度桥梁,由于桥址区地形地貌复杂,桥面离开谷底较高,桥址区的风特性一般无法通过抗风规范直接确定. 为确定深切峡谷桥址区高空的风特性,利用大桥施工过程中的猫道,在大桥跨中位置处布置了一套三维超声风速仪,对桥址区高空中的风特性进行了现场实测,获得了7 899条有效的脉动风速时程,以此为基础对桥址区高空的风特性(平均风速、风向、风攻角、紊流度、紊流积分尺度、功率谱)进行了分析. 研究结果表明:深切峡谷桥址区高空风特性受地形的影响已经明显减弱,其风攻角均值趋于0,同时高空的紊流积分尺度更加接近平原地区,紊流积分尺度均值比规范推荐值要大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号