首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural pipe-in-pipe cross sections have significant potential for application in offshore oil and gas production systems because they combine thermal insulation performance with structural strength and self weight in an integrated way. Such cross sections comprise inner and outer thin-walled pipes with the annulus between them fully filled by a selectable filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross sections can exhibit several different collapse mechanisms, and the basis of the preferential occurrence of one over the others is of interest. This article presents an exact analysis for predicting the elastic buckling behaviours of a structural pipe-in-pipe cross section when subjected to external hydrostatic pressure. Simplified approximations are also investigated for elastic buckling pressure and mode when the outer pipe and its contact with the filler material is considered as a pipe on an elastic foundation. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness, and the thicknesses of the inner and outer pipes. Case studies based on realistic application scenarios are used to show that the simplified approximations are sufficiently accurate for practical structural design purposes.  相似文献   

2.
深水管中管钢悬链线立管的非线性动力分析   总被引:1,自引:0,他引:1  
立管技术是深水资源开发的关键技术之一。管中管钢悬链线立管具有同心的外管与内管,其外管提供机械保护,内管提供油气通道,内、外管之间按照一定的距离安装扶正器以保护绝热材料,在深水油气开发中具有较大的应用价值。充分考虑在位立管承受的复杂载荷条件泡括动边界、波浪与海流载荷、立管自重、海水浮力、管内外静压力),以及整体和局部非线性因素(包括摩擦、滑移、接触、间隙等),采用时域有限元软件ABAQUS实现管中管钢悬链线立管的建模与非线性动力分析。  相似文献   

3.
随着海洋油气开发工程作业水深的增加,管中管结构承受的波浪、海流深海环境载荷增大,可能会引发强度破坏以及疲劳损伤,造成重大损失,所以开展深水条件下管中管系统的力学行为分析研究是有必要的。本文考虑了顶部张紧力和动态边界,利用有限元模型来模拟管中管结构及其力学行为。并利用接触单元模拟内外管接触的约束条件。综合统计了管柱的接触碰撞位置和应力危险位置,提出了新型扶正器的布置方案,以达到减缓碰撞保护管柱的目的,并对比了等距离设置扶正器的方案。通过对比研究发现本文提出的扶正方案有效减缓了内外管的应力等级,对于实际工程和研究具有一定指导价值。  相似文献   

4.
In addition to the traditional hollow circular sections used in marine structures, other hollow sections have attracted the attention of architects and design engineers due to their mechanical characteristics such as torsional rigidity and local strength against impact loading. The purpose of this study is to investigate dynamic response of pipes conveying fluid with variable wall thickness through both circumferential and axial directions. Pipes with variable wall thickness have different flexural rigidities about two different principal axes. This property allows these pipes to be oriented efficiently, meet various design requirements and resist the applied loads. The results of this investigation provide a better insight into the physics and dynamic behavior of non-circular pipes conveying fluid. Two different geometries are studied, (i) the pipe is assumed with a general non-circular cross section with variable wall thickness along the circumferential direction, (ii) both inner and outer boundaries of the pipe cross section are assumed to be circles whereas the wall thickness of the pipe along axial direction is varied with a specified function. The governing differential equations of the problem are derived using Timoshenko beam theory with the effect of shear deformation included in the formulation. The discretization of the problem domain is done using the finite element method. Consequently, a modal analysis is employed to calculate the critical flow velocities of the pipe with clamped-clamped end conditions. The effects of different cross sections on the critical flow velocity are investigated. The importance of Coriolis forces on the presence of coupled-mode flutter and re-stabilization point are also discussed for different values of mass ratio.  相似文献   

5.
Flexible pipes are commonly exposed to damages on the outer layers due to abrasion with seafloor or improper installation and operation, which may render them vulnerable to birdcaging failures. This paper presents a finite element model for the residual axial compressive strength evaluation of a flexible pipe with local damage on the outer layers. The elastoplastic nonlinearity of tensile armour steel layers and hyperelasticity of polymeric outer sheath are taken into account. This model is verified against existing test data. Parametric studies are then performed by varying the damage size in either the pipe axial or circumferential directions. The flexible pipe axial resistance, deformations, as well as the tensile armour wires layers stress states near the damaged section under different damage and axial compression conditions are discussed. The case studies show that damage on the outer layer, especially the anti-birdcage tape layer, is highly detrimental to flexible pipe residual strength against axial compression. The present results and discussions are instructive in understanding the flexible pipe birdcaging mechanism.  相似文献   

6.
The interest of using thermoplastic composite pipes has increased in offshore deepwater oil fields. Thermoplastic composite pipes consist of several carbon/glass fiber reinforced laminate layers to confer stiffness and strength located between inner and outer homogeneous thermoplastic layers for fluid containment and protection. This paper presents a theoretical analysis for thermoplastic composite pipes under combined pure torsion and thermomechanical loading from operational thermal gradients, considering the inner and outer isotropic homogeneous layers and intermediate transversely isotropic laminate ply layers. Perfect bond between adjacent layers and interfaces continuities are assumed. Based on the obtained stresses in the principal material directions, through-thickness failure indexes related to the von Mises and Maximum Stress or Tsai-Hill criteria are respectively evaluated for homogeneous and laminate layers. For each thermal gradient, the limit torque (i.e. when the failure index is equal to 1) is calculated. From the case study, it is observed that without thermal loading or for small operational temperature, failure occurs in the laminate, otherwise it is observed in the inner homogeneous layer. The thickness of the homogeneous layer significantly affects the limit torque and the absolute values of the limit clockwise and anticlockwise torque slightly differ when the operational temperature is included.  相似文献   

7.
Sandwich pipe (SP) combining high-strength performance and thermal insulation has been considered an effective solution for oil and gas transportation in ultra-deepwater. Strain hardening cementitious composite (SHCC) is well known for its capacity to withstand both tensile load and external hydrostatic pressure. The sandwich pipe considered in the research is constituted of concentric steel pipes with SHCC annular layer. In the present research work, the SHCC was manufactured, and full scale sandwich pipes were assembled. Intact and damaged specimens were submitted to controlled external pressure in a hyperbaric chamber to obtain the collapse and propagation pressures, respectively. Modeling and simulation of the buckle propagation of the SPs were correlated with the experimental results. The results show that sandwich pipe with SHCC core has an excellent structural strength under high external pressure in both intact and damaged conditions. Moreover, the results also show that the interaction between the annular and the inner/outer pipes provides a significant contribution to the buckling resistance under propagation pressure.  相似文献   

8.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.  相似文献   

9.
通过对东营港扩建引桥工程的设计特点、施工难点的分析,制定了大管桩与钢管组合斜桩沉设、挡冰桩裙安装、承台现浇和50 mT型梁海上安装等几项关键施工技术方案,并得到成功应用。为今后我国外海,特别是北方海域利用大管桩作基础的跨海桥梁、高桩码头等工程的设计与施工提供一定的借鉴。  相似文献   

10.
双级轴向旋流非预混燃烧和流动特性分析   总被引:1,自引:0,他引:1  
本文对双级轴向旋流非预混燃烧器进行了研究,应用CFD数值模拟,探索一级旋流器叶片安装角度和文氏管扩张角的角度变化对燃烧特性和温度场以及流动场的影响规律。研究结果表明:文氏管扩张角依次增大过程中,燃烧室内中心回流区中心前移,旋转射流径向扩张角增大;CH4的浓度沿径向分布更加均匀,降低了燃烧室内最高温度。此外在五种不同文氏管角度和一级旋流器叶片安装角度的结构条件下燃烧室中外回流区域温度均低于内回流区域温度。在一级旋流器叶片安装角为55°、二级旋流器叶片安装角为35°时,燃烧器出现回火现象。  相似文献   

11.
Compared to conventional fibre-reinforced composite pipes, fibre-reinforced hybrid composite pipes are more complex and are characterised by the use of hybrid fibres, hybrid matrices, and multiple fibre winding angles. In this study, based on the mechanical model of conventional fibre-reinforced composite pipes, the cross-section division method, the radial pressure on the adjacent layer by spiral wound rope structures, and the calculation method of axial force in each layer were improved. Furthermore, the von Mises stresses in each layer were calculated to discriminate the failure to establish a mechanical model of fibre-reinforced hybrid composite pipes with any number of reinforced layers under axial tension, internal pressure, and external pressure. Experimental data and the finite element method (FEM) were used to verify the reliability of the established model, with the axial tensile mechanical properties analysed based on the established model. The results showed that the large-angle fibres no longer withstood the axial tensile load when the winding angle of the large-angle fibres was greater than 45°. The matrices yielding was much earlier than the fibre breakage. The matrices hybrid methods have a large influence on the axial tensile properties of fibre-reinforced hybrid composite pipes, and improving the material properties of the inner and outer liners can significantly improve the axial tensile properties of fibre-reinforced hybrid composite pipes.  相似文献   

12.
舱室爆炸载荷作用下舷侧防护结构的响应研究   总被引:3,自引:0,他引:3  
文章对舱室爆炸载荷作用下舷侧防护结构的响应进行了研究,对防护结构的破坏形式、纵舱壁的响应等进行了详细分析.在舱室爆炸载荷作用下,防护结构中以膨胀舱的受损程度最为严重,液舱往里结构受损程度较轻.受膨胀舱中隔板间距疏密影响的,主要是膨胀舱中甲板及横舱壁,液舱往里结构所受影响很小.  相似文献   

13.
周渊键  陈刚  徐春雨 《舰船电子工程》2012,32(1):108-109,120
根据外壁面的温度分布推算内壁面的温度是一类不适定的导热反问题。通过研究身管内膛壁热响应特性,建立应用多个温度测点、多个未来时间步的计算模型。根据Becks序列函数法的思想,计算结构内部温度场,并取其中数点温度信息作为反问题输入条件,反演得到内膛壁热流响应。在此基础上,利用FORTRAN语言编写程序进行计算求解,由身管外壁温度随时间的变化得到管内膛壁温度随时间的变化。计算结果表明,计算值与准实验值吻合,序列函数法能够准确地计算得到管内壁不同位置温度随时间的变化。  相似文献   

14.
基于MIDAS的大体积混凝土冷却水管布置方案研究   总被引:1,自引:0,他引:1  
为有效发挥大体积混凝土结构中冷却水管的控温作用,利用有限元软件MIDAS/CIVIL,对埋设冷却水管的大体积混凝土的温度场进行计算,分析水管布置形式,水管直径、管距、长度,冷却水流量等因素对温度场的影响,并综合考虑冷却效率和施工成本,提出较为合理的冷却水管布置方案。  相似文献   

15.
将混凝土坝中广泛应用的冷却水管技术引入到船闸结构的温控中。通过在边底板中埋设金属冷却水管与未采用相应措施的边底板及中底板进行对比,分析冷却水管对闸首底板的温控效果。结果表明,冷却水管可显著改善底板混凝土内部的温度分布,对降低内外温差和温度应力起到较为明显的效果。  相似文献   

16.
弹簧支吊架在FPSO高温管道中的应用   总被引:1,自引:1,他引:0  
高温条件下管道热胀、冷缩和端点附加位移产生的位移载荷是造成管道应力过大和相连设备管口扭矩、反力过大的主要因素。合理设计管道走向和支架布置来增加管道系统柔性是减小管道热载、降低管道应力的主要途径。以机舱排烟管道系统为例,在CAESAR II中建立数值模型,分析了排烟管道的热胀载荷对管道的影响,比较了弹簧支架约束与刚性支架约束对高温排烟管道一次、二次应力的影响。研究发现,在高温管道中,弹簧支吊架不仅能增加管道系统的柔性,减小管道热应力,而且能降低管道对支架的约束载荷,减小管道所受的集中力。  相似文献   

17.
张晓平  何琳  周炜 《武汉造船》2012,(1):118-120,123
为了保证挠性接管在使用过程中的安全性,需要对其进行平衡性设计。提出一种新型弧形体挠性接管的设计方法。采用直管内部加压、两端向内挤压的方法进行弧形体挠性接管成型,通过对纤维帘线进行建模,确定直管对应于不同帘线缠绕角的长度;采用有限元方法计算确定满足平衡性要求的直管帘线缠绕角。通过合理设计以保证弧形体挠性接管具有足够的平衡性。  相似文献   

18.
This article studies the structural response of a 6.0” flexible pipe under pure tension considering intact and damaged conditions. In the damaged condition, several wires of the tensile armor layers are assumed to be broken. A three-dimensional nonlinear finite element (FE) model devoted to analyze the local mechanical response of flexible pipes is employed in this study. This model is capable of representing each tensile armor wire and, therefore, localized defects, including total rupture, may be adequately represented. Results from experimental tests validate the FE predictions and indicate a reduction in the axial stiffness of the pipe, a non-uniform redistribution of forces among the remaining intact wires of the damaged tensile armor layers and high stress concentrations in the wires near the broken ones. Moreover, the FE model indicates that significant normal bending stresses may arise in the pressure armor and inner carcass due to an uneven pressure distribution on these layers. Finally, the results obtained are employed to estimate the pull out capacity of the studied flexible pipe.  相似文献   

19.
康庄  张立  刘禹维  何宁 《船舶工程》2015,37(3):74-77
顶部张紧式立管(TTR)是油气开发必不可少的立管类型。研究了南海1500m水深半潜式干树深水平台TTR的概念设计,提出新的管中管结构的等效方法。通过分析立管结构的受力控制方程,得到立管受力分析的主要影响参数,按照轴向刚度、抗弯刚度、立管湿重和液体湿重等效原则,实现立管力学性质的等效。使用Orca Flex软件非线性时域分析立管遭受的四种典型工况,分别获得张力和弯矩,依据管中管结构外管和内管的刚度在等效模型中占的比例进行分配,根据API规范确定管中管结构外管和内管的应力,得到TTR四种工况下的强度分析结果,认为在半潜平台下,TTR强度满足设计要求。  相似文献   

20.
Sandwich pipes have been studied as one option to overcome the high pressure problems in deep and ultra-deep waters. They have become a possible alternative solution for submarine infrastructure due to its thermal insulation capacity. This contribute to preventing the pipeline from clogging due to the difference in temperature between reservoir fluids and water at the bottom of the sea. The pipelines in ultra-deepwater are continually exposed to severe operating conditions, such as the effect of high levels of external pressure that can cause local deformation or even collapse of the pipe. Thus, a greater understanding of the mechanical behavior of sandwich pipes is required. This paper presents a FEM-based evaluation of friction and initial imperfection effects on sandwich pipes local buckling. The non-linear evaluation was carried out in FEM of local buckling of two sandwich pipes, with polypropylene and cement as filled annular material. The influence of initial imperfections and the degree of friction, between the annular material and the steel pipes, as well as geometric variations of the pipe were considered. The numerical simulations results indicate a capacity to withstand ultra-deep waters collapsing pressures, around 3000 m, either for polypropylene or cement filled annular material model. In addition, the results indicate that the collapse pressure is inversely proportional to the increase in annular thickness and directly proportional to the decrease in friction which have an impact and contribution on the carrying capacity of the sandwich pipe. Further research will consider a design of experiments analysis of reported effects for different diameter-to-thickness ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号