首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
高志兴 《城市道桥与防洪》2020,(1):30-33,M0006,M0007
高速公路建设过程中,沿线拆迁产生大量的建筑垃圾,对建筑垃圾的回收利用,不仅能节省工程造价、节约自然资源,海能解决因建筑垃圾堆放产生的环境问题,保障高速公路建设的可持续发展。建筑垃圾主要由砖块、混凝土快、碎石等组成,是很好的路基填筑材料,经过简单的分选、挑拣,直接用于高速公路路基填筑。建筑垃圾颗粒大小不一,需要进行破碎,提出建筑垃圾在路基填筑层位采用羊足碾碾压破碎,结合振动碾压和铁三轮静压,实现建筑垃圾路基碾压密实。建筑垃圾有卡车运至路基填筑现场,现场松铺厚度不超过40 cm,倾倒后采用推土机由前向后倒退摊铺,尽量将大颗粒建筑垃圾铺在下部、细颗粒建筑垃圾铺在上部,先采用21 t羊足碾碾压6-10遍,保证路基表层颗粒粒径不超过10 cm;21 t振动压路机碾压3~6遍、22 t铁三轮压路机碾压3遍.提岀建筑垃圾路基质量控制指标和检测方法。  相似文献   

2.
将建筑垃圾再生料用于道路工程建设,是发展绿色低碳交通的具体举措。然而由于再生料成分复杂,在荷载和温度湿度等外界环境的作用下,易发生颗粒破碎,导致再生料的性能不稳定。因此,再生料路基与传统路基也存在明显差异。从建筑垃圾再生料用于路基修筑时的物理力学性能,再生料路基典型工程应用,再生料路基的环保性和经济性等三方面对现有研究成果进行了回顾和梳理。发现目前关于再生料路基的服役性能预估及调控的研究还比较匮乏,少有路基体中污染物对周边环境的影响分析,建议开展此类研究,以便于推进建筑垃圾在路基工程中更为广泛和安全可靠的应用。  相似文献   

3.
李行  吴超凡  万暑  张继森 《中外公路》2019,39(1):253-256
针对建筑垃圾细集料应用于路基回填材料的路用性能进行了研究。研究所用集料包括混凝土块和砖混结构再生集料两类。试验结果表明:当压实度满足规范要求时,两类建筑垃圾细集料的CBR值(加州承载比)均能达到各级公路路基材料的强度要求。利用混凝土块细集料进行了路基试验段铺筑,质量检测结果表明:路基压实度及回弹模量均满足规范及设计要求。  相似文献   

4.
介绍建筑垃圾灰土挤密桩地基在黄土路基中应用的作用机理、施工工艺、设计计算、最大干密度和最佳含水率试验及加固效果检测。建筑垃圾灰土挤密桩的应用,能很好地消纳建筑垃圾,并能有效地消除黄土的湿陷性,提高黄土地基的强度,能够满足一般公路路基承载力的设计要求,达到节约资源,减少工程投资的目的,创造显著的社会效益、经济效益和环保效益。  相似文献   

5.
建筑垃圾回填路基施工技术研究   总被引:1,自引:0,他引:1  
为使建筑垃圾作为路基回填材料进行再利用,考虑建筑垃圾相对于普通填料的特殊性,通过对现有工程的总结和研究,提出了回填路基所用建筑垃圾的技术指标及要求。此外,通过对建筑垃圾的处理及建筑垃圾回填路基的施工工艺的分析研究,确定了建筑垃圾回填路基施工质量控制的关键技术,从而为建筑垃圾回填路基的施工提供参考。  相似文献   

6.
以温岭某地城中村改造的房屋拆迁建筑垃圾填料为研究对象,在分析其组分构成的基础上,对砖,混凝土块和石块进行点荷载强度试验,分析其强度差异性;进行重型击实和振动击实试验,从击实特性曲线和击实前后颗粒破碎等方面对比两种击实方式的差异性;进行CBR试验、浸水条件下的回弹模量试验,分析再生填料力学性能。研究结果表明:砖、混凝土块和石块的强度存在显著差异是引起颗粒“二次破碎”的关键;振动击实后的填料干密度远大于重型击实;填料CBR值和浸水后的回弹模量值满足路基设计技术水平。建筑垃圾再生填料力学性能和工程性能均满足相关规范要求,具有进一步推广应用的价值。  相似文献   

7.
基于建筑垃圾组成成分复杂性的特点,开展长期浸水条件下强度特性试验研究,探索级配变化、成分组成对路基填料长期服役性能影响规律,为路基长期浸水强度预测提供参考。试验结果表明:建筑垃圾再生填料具有较高强度,满足规范要求;浸水后试样CBR强度和无侧限抗压强度快速下降,而后趋于稳定;废砖含量是影响路基强度特性及长期水稳性的重要因素,废砖块含量越多,再生混合料强度折减越显著,达到最不利状态所需时间越长。基于对数模型,建立路基填料在长期浸水条件下强度快速预测公式。经工程实例验证,现场压实度及弯沉质量结果达到设计要求。  相似文献   

8.
以陕西省西咸北环线高速公路工程西吴枢纽立交C匝道路基填筑试验段为依托,研究了建筑垃圾作为路基填料的基本物理性质,结合现场施工分析了建筑垃圾填料压实性能的影响因素,建筑垃圾填料含水率对压实度的影响,合理的碾压遍数及现场建筑垃圾路基回弹模量。结果表明:建筑垃圾填料含水率控制在14.8%~15.0%时,碾压效果最好,碾压遍数超过20次后,压实功对填料的压实效果已不显著。建议超过15遍碾压后,当压实效果趋于平稳时可停止碾压,此时路基回弹模量为155~170 MPa,相应的压实度为97.87%~98.46%。  相似文献   

9.
城市道路路基填筑中建筑垃圾的处理   总被引:2,自引:0,他引:2  
以西安市三环路拆迁建筑垃圾作为路基填筑材料为例,简单介绍建筑垃圾分层填筑的施工方法.并对基底处理、松铺厚度、碾压遍数等施工工艺、质量控制指标以及压实度、弯沉值等试验检测结果进行介绍.为类似施工提供参考.  相似文献   

10.
李娜 《公路》2022,(4):101-105
随着社会经济的发展,基础设施建设不断涌现,建筑垃圾成为影响社会环境的一项重要问题。建筑垃圾资源化再利用成为解决这一问题的方法之一。通过对已建工程的研究,系统分析了建筑垃圾的组成分类,介绍了建筑垃圾的工程特性,并在此基础上提出应用建筑垃圾填筑路基的技术要求和施工工艺流程。通过分析总结试验结果,提出了建筑垃圾填筑路基的质量控制指标与方法,对同类项目的开展与应用提供了参考。  相似文献   

11.
复合三维排水土工网作为一种新型的排水材料在道路工程中得到越来越多的应用。该文首先分析了复合三维排水土工网的原材料性能,并重点介绍其在路基处理工程中的应用。工程实例表明:该型材料排水效果明显提高,工程投资明显减少。  相似文献   

12.
该文在分析膨胀土的判别分类、工程特性、路基处治技术的基础上,根据四川省成都市新津县兴物六路北沿线道路工程实际情况以及膨胀土特性提出了针对该工程的膨胀土处理办法。  相似文献   

13.
林广春 《城市道桥与防洪》2019,(1):188-190,I0017,I0018
泡沫轻质土作为近年来常用的一种新型材料,具有轻质性、整体性、抗压性、耐久性、环保性等良好的工程特性。与传统填料相比,泡沫轻质土的抗压及高强特性,对工后沉降的控制更具优势。特别当采用泡沫轻质土对路桥衔接段路基进行处理时,可大幅降低填土荷重,减少工后沉降及影响深度。现结合工程实例,详细阐述了泡沫轻质土在路桥衔接处路基处理中,采用的主要设计技术指标、设计要点及施工要点,为该材料在工程领域推广应用提供参考。  相似文献   

14.
碱渣在道路路基处理中的应用研究   总被引:1,自引:0,他引:1  
天津滨海新区中央大道经过原碱渣山,在地表以下有7 m的碱渣,由于碱渣含水量高、遇水强度显著降低,考虑到将其全部挖出造价过高,该文针对该种路基处理进行研究,对碱渣进行室内无侧限抗压强度、承载力测定,同时利用不同的辅料(水泥、石灰、粉煤灰)及土与碱渣进行掺配,利用碱渣作为路基处理填料,确定该种道路路基处理措施,并采用现场模拟试验进行沉降分析,以此确定中央大道经过碱渣山路基处理措施,并为碱渣在道路路基中的应用提供技术支持。  相似文献   

15.
城市道路建设过程中,路基软地基处理是非常重要的问题,如果处理不好将会影响整体市政工程建设,因此,研究和分析软地基处理过程中的市政工程技术非常有价值。该文从两个方面对问题展开了分析,这两个方面也包含了软地基处理与普通地基处理的不同点,其中清淤换填是为了除去软地基中的软弱淤泥部分,而深层搅拌桩施工则是为了进一步对地基进行加固。两者都是软地基处理过程的重要施工程序,缺一不可。  相似文献   

16.
随着西部地区公路建设的快速发展,膨胀土问题成为迫切需要解决的问题之一。该文分析了蒙自地区膨胀土的路基工程特性及其病害,探讨了多种路基处理方法及处理深度,以期能给今后当地的公路建设提供借鉴。  相似文献   

17.
换填土层法是软土路基处理的一种常用方案,此方案的优点是施工工艺简单,施工速度快,但经济性不是很好。因此在满足特定条件的软土路基处理过程中,选择了折中且适合当地经济基础的肋式换填,在满足路基强度要求的情况下节省了将近一半的投资。经过时间的检验,本方案是合理可行的。  相似文献   

18.
该文介绍了高压喷射注浆法对路基的加固原理及其使用材料,并通过实例工程应用,总结出单管旋喷法施工的特点。  相似文献   

19.
对于湿陷性黄土地区的地基、路基处理方法的几点探讨   总被引:1,自引:0,他引:1  
该文通过对湿陷性黄土的研究,系统介绍了湿陷性黄土地区地基和路基处理的常用方法与前沿状况,提出了各种方法的适用性、弊端及经济造价,给出了不同自然条件和工况下湿陷性黄土地区地基和路基处理的的适用方案。  相似文献   

20.
该文通过珠海井岸沿河路路基防护的工程实例,介绍了软体排施工技术。该技术作为软基区域路基防护措施的一种新形式,对防风浪和水流冲刷,保护路基安全方面是切实可行的,与传统的路基防护措施比较,具有稳定性好,抗变形性强,造价低,后期维护量小的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号