首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以嘉绍大桥为例,利用地震作用的时程分析方法,深入研究了考虑行波效应的多点激励作用下,大跨度六塔斜拉桥地震响应特性.研究结果表明:考虑行波效应时大跨度六塔斜拉桥和大跨度双塔斜拉桥的地震响应均小于一致激励作用时的情况,其中六塔斜拉桥在靠近边跨的桥塔和主梁相比靠近跨中部分的地震响应对行波效应更为敏感.同时,刚性铰对多塔斜拉桥地震响应不敏感.  相似文献   

2.
以嘉绍大桥为工程背景,采用非线性时程分析方法,考虑多点激励地震输入,综合分析多点激励行波效应对嘉绍大桥多塔斜拉桥地震响应,包括刚性铰地震位移、索塔基础地震内力响应的影响规律.为使分析结果更有普遍意义,地震行波速度分别选取了500m/s、1000m/s、2000m/s以及3000m/s等4种情况,以涵盖各种地质情况下行波效应对结构的影响特征.  相似文献   

3.
为研究大跨度斜拉桥地震反应特性及行波效应对其影响,以某大跨度斜拉桥为例,依据D'Alembert基本原理,采用动态时程法计算结构动力位移和内力.选用2条不同频谱特性地震波,考虑不同视波速对大跨度斜拉桥地震反应的影响,重点研究行波效应对大跨度斜拉桥的地震反应影响,并与一致激励地震反应结果进行比较.结果表明:随着视波速的增大,各桥塔塔底内力、塔顶位移以及墩底内力的地震响应值有显著变化且趋近于一致激励地震响应;行波效应对主梁顺桥向轴力和塔顺桥向剪力有显著影响;在地震波加速度峰值(0.40g)相同的情况下,由于各条波之间频谱特性的不同,不同视波速输入下结构的地震反应存在一定的差异.  相似文献   

4.
不同地震激励下大跨度斜拉桥的地震反应分析   总被引:12,自引:4,他引:12  
考虑地震波的行波效应、部分相干效应和局部场地效应,建立了不同机制的地震激励下大跨度斜拉桥地震反应的分析方法并以正在建设的主跨1 018 m的香港某大跨度斜拉桥为例,数值仿真了大跨度斜拉桥在确定性地震波一致激励、行波激励以及随机地震动场多点激励下的地震反应。结果表明:与确定性地震波一致激励相比,在确定性地震波行波激励以及考虑空间变化的随机地震动场激励下,斜拉桥的纵向位移反应明显减小,而其主跨跨中竖向位移反应明显增大。由此得出结论:对于大跨度斜拉桥,一致地震激励不能控制其抗震设计,应考虑行波激励和随机地震动场多点激励对其地震响应的影响。  相似文献   

5.
基于平稳随机地震动场理论,对大跨度斜拉桥进行非一致激励下的平稳随机地震响应分析。以金塘大桥主通航孔桥为研究对象建立有限元模型,采用多点平稳随机地震响应分析方法,数值仿真了该斜拉桥在纵桥向、横桥向和竖向多点激励下的地震响应,研究了地震动的空间变化,包括部分相干效应和行波效应以及视波速变化对大跨度斜拉桥地震响应的影响。数值分析结果表明:非一致激励下斜拉桥的内力和位移有较大改变,地震动的行波效应影响比部分相干效应的影响更大,地震动的空间变化对纵桥向激励有利,对横桥向激励影响较小,对竖向激励影响很大且不利。对大跨度斜拉桥,必须进行多点地震激励的响应分析。  相似文献   

6.
为分析地震动空间效应对大跨斜拉桥的地震动响应的影响,采用绝对位移求解的虚拟激励法结合通用有限元软件对大跨度斜拉桥进行多维多点地震动输入的随机地震响应分析,从响应功率谱角度分析了在多维多点作用下结构的地震响应规律,结果表明:1)行波效应对结构位移和内力有利;2)局部场地效应对结构响应的影响与结构边界条件和刚度有关。  相似文献   

7.
为了研究桩基和场地土以及地震动空间效应对大跨斜拉桥地震反应的影响,以一座试设计主跨1 400m超大跨斜拉桥为试验原型,按1/70几何缩尺比设计和制作了一座包括群桩基础、模型土和上部结构等在内的试验全模型,缩尺后试验模型全长38.2m;根据动力等效原则,采用由砂子和木屑均匀混合而成的模型土模拟场地土,且用层状剪切土箱盛放。采用时间滞后的方法实现行波效应,通过多点振动台试验分别研究了纵向行波、横向行波对超大跨斜拉桥地震响应的影响及其机理。试验结果表明:行波作用对斜拉桥地震响应的影响非常复杂,纵向行波使塔顶纵向加速度和主跨竖向加速度的最大增幅分别约为50%和40%,而横向行波使塔顶和主跨横向加速度的最大减幅分别为15%和50%;纵向行波使主跨竖向位移的最大增幅约为40%,而横向行波使其横向相对位移的最大减幅为20%。行波作用对斜拉桥不同构件地震响应的影响也不同,与一致激励结果相比,纵向行波使塔顶、塔-梁以及墩顶相对纵向位移的最大减幅分别约为50%、40%和60%,使主跨竖向位移的最大增幅约为40%。此外,试验发现桩-土-结构相互作用对主塔、桥墩的加速度响应产生明显不利影响,使塔底增大2倍多,墩底增大1.1~4.0倍。基于上述结果,建议在斜拉桥地震反应分析或抗震设计时,需考虑行波效应和桩-土-结构相互作用等因素的影响,特别是其不利影响。  相似文献   

8.
研究大跨度结构的地震响应时,有必要考虑地震波的行波效应。针对一种特殊的钢-混凝土组合拱桥进行地震响应研究。以重庆市万县长江大桥为建模依据,使用大型通用有限元软件sap2000建立跨径为420 m的钢-混凝土组合拱桥计算模型,并对该模型多种激励状态进行分析。在一致激励状态下进行几何非线性时程分析,并基于多点激振理论和相对位移法,采用7种不同的时差对计算模型进行行波效应下的地震响应分析。对比研究表明行波效应对大跨度桥梁结构地震响应有很大影响。  相似文献   

9.
为探讨行波效应对长联大跨径减隔震连续梁桥结构地震响应的影响规律,以某长联大跨径钢桁架连续梁桥为对象,建立了该桥采用双曲面球型减隔震支座进行减隔震设计的三维有限元分析模型,通过基于大质量法的非线性时程分析,对该桥考虑行波效应和一致激励下的地震响应进行了计算和对比分析。研究结果表明:行波效应对大桥地震响应的影响较为明显,且与一致激励工况相比,考虑行波效应后大桥内力响应可能发生明显增大,不利于结构安全,而导致响应增大所对应的地震波视波速则会随支座参数改变发生变化;同时主梁位移则随加载视波速的增加缓慢增大,在一致激励作用下达到峰值;在类似减隔震设计中,应考虑行波效应的影响以保证结构响应在安全范围内,主梁位移可偏安全地以一致激励所得结果为准。  相似文献   

10.
针对大跨桥梁结构,建立了考虑非一致激励的地震时程分析方法,基于ANSYS软件平台,运用APDL进行二次开发,研究了非一致激励作用下某漂浮体系斜拉桥的地震时程响应。分析表明,考虑非线性与否对结构的动力响应影响不大;行波效应对主梁跨中和塔顶节点位移不利,其响应峰值随波速变化呈振荡分布;对远离震源点一侧塔底内力有利,其响应峰值与激励的相位差基本呈反比;主梁内力对行波效应不敏感。  相似文献   

11.
以深水连续刚构桥为研究对象,采用Morison方程计算动水压力,从频谱、水深、结构周期3个方面考虑行波效应对深水桥梁进行地震响应分析。研究表明:动水压力对深水桥墩地震响应的影响随着波速的不同而变化,并且考虑行波效应时,动水压力对深水桥墩地震响应的影响还与地震波的频谱特性及计算的项目有关;考虑行波效应计算动水压力对深水桥墩地震响应的影响程度跟水深和结构固有周期有关。由此得出结论,大跨度深水桥梁地震响应分析应合理地考虑行波效应和动水压力。  相似文献   

12.
为研究行波效应对大跨度斜拉桥索力和墩/塔内力的影响,利用MIDAS/Civil建立某大跨度双塔斜拉桥有限元模型,采用相对位移法,分析不同地震波速度下拉索的索力响应、墩/塔底的内力响应、主梁和塔顶的位移响应,并将其与一致激励下地震响应相比较。结果表明,考虑行波效应,低波速时索力峰值大于一致激励下索力峰值,但随着波速的增大,行波效应对索力的影响逐渐减弱;随着波速的增大,行波效应对桥梁结构位移和内力的影响减小;行波效应对各墩/塔底内力的影响不相同,与一致激励相比,不同部位的内力响应有增有减,低波速对墩/塔底内力的影响最明显;考虑行波效应,主梁跨中和塔顶的纵向位移较一致激励下减小,对结构有利,但主梁跨中竖向位移增幅较大,不利于结构抗震,设计时应予以重视。  相似文献   

13.
雷凡  邓育林  何雄君 《公路》2015,(2):70-75
以一座典型大跨斜拉桥为研究背景,采用SAP2000Nonlinear有限元程序,考虑地震动行波效应以及主桥-引桥伸缩缝处碰撞效应的影响,建立了桥梁结构三维非线性计算模型,采用非线性动力时程分析法,分析了地震动行波作用下大跨斜拉桥主桥—引桥伸缩缝处碰撞效应对结构地震响应的影响。研究结果表明,地震动行波作用下大跨斜拉桥主桥—引桥伸缩缝处碰撞效应对引桥结构地震响应的影响较大,与一致激励下主桥-引桥碰撞效应相比,不仅会在伸缩缝处激起更大的撞击力,而且会使得两侧引桥梁端位移、主梁-过渡墩相对位移以及固定墩地震响应显著增大,更易导致引桥桥墩破坏或梁体落梁。  相似文献   

14.
由于崎岖地形(非平坦地表和非均匀地层)具有复杂的地震动空间变异性,对于该类场地效应的地震特异性所引发的结构差动损害尚无系统性的研究。为了深入研究崎岖地形下地震动空间效应对结构的影响,针对多层非均匀介质Ⅴ形峡谷这种特殊地形,详细分析了Ⅴ形场地下地震动频谱特性的影响因素(行波效应、相干效应和局部场地效应等),并模拟了相应的地震动输入;对一横跨Ⅴ形峡谷的连续钢箱梁桥进行了有限元计算,对比分析了不同地震动输入和不同边界条件下结构模型的地震响应;探究了Ⅴ形场地超大震作用下的桥梁破坏模式,计算出结构的薄弱部位,并着重对比了Ⅴ形峡谷场地和平坦场地2种地形下的地震激励对结构破坏模式的影响差异,揭示了Ⅴ形峡谷场地下的模拟多点地震输入特异性对桥梁的结构响应和破坏模式的特殊影响,发现同水平场地相比该类场地下的地震激励会在桥梁内部引发额外的差动内力,进而使桥梁破坏更早发生并改变了结构的破坏模式。结果表明:①Ⅴ形峡谷场地极大地改变了地震波场中的散射波组成,且同水平场地地震激励相比,其对结构具有更强的空间差动效应,从而引发更大的差动内力;②与水平场地相比,Ⅴ形峡谷场地地震动输入下的桥梁破坏发生时间较为提前,且初始破坏点并不相同,从而导致结构的破坏模式改变。  相似文献   

15.
大跨度悬索桥由于各墩柱基础所处地质条件的差异,不同墩柱间的地震动输入存在时间差,结构考虑了行波效应的地震响应可能与一致激励得到的不同。为了研究大跨度悬索桥的行波效应,以某长江大桥为研究对象,分别采用一致激励和非一致激励地震动时程输入,分析结果表明,在不同视波速时结构内力变化不太显著,但对梁端纵向位移较为敏感,相比在一致激励作用下,考虑了行波效应的结构地震响应较小。  相似文献   

16.
由于崎岖地形(非平坦地表和非均匀地层)具有复杂的地震动空间变异性,对于该类场地效应的地震特异性所引发的结构差动损害尚无系统性的研究。为了深入研究崎岖地形下地震动空间效应对结构的影响,针对多层非均匀介质V形峡谷这种特殊地形,详细分析了V形场地下地震动频谱特性的影响因素(行波效应、相干效应和局部场地效应等),并模拟了相应的地震动输入;对一横跨V形峡谷的连续钢箱梁桥进行了有限元计算,对比分析了不同地震动输入和不同边界条件下结构模型的地震响应;探究了V形场地超大震作用下的桥梁破坏模式,计算出结构的薄弱部位,并着重对比了V形峡谷场地和平坦场地2种地形下的地震激励对结构破坏模式的影响差异,揭示了V形峡谷场地下的模拟多点地震输入特异性对桥梁的结构响应和破坏模式的特殊影响,发现同水平场地相比该类场地下的地震激励会在桥梁内部引发额外的差动内力,进而使桥梁破坏更早发生并改变了结构的破坏模式。结果表明:①V形峡谷场地极大地改变了地震波场中的散射波组成,且同水平场地地震激励相比,其对结构具有更强的空间差动效应,从而引发更大的差动内力;②与水平场地相比,V形峡谷场地地震动输入下的桥梁破坏发生时间较为提前,且初始破坏点并不相同,从而导致结构的破坏模式改变。  相似文献   

17.
城市高架桥的主要型式是连续桥梁,多跨连续梁桥由于延伸长,跨数多,在研究其抗震性能时,需要考虑多点激励下结构的动力反应,因此高架连续梁桥成为典型的研究对象,行波效应是多点地震地面运动分析方法中最常用的一种方法,因此被地震分析中普遍应用。将几何比例为1:10的连续梁桥缩尺模型为研究对象,完成了纵向一致地震动输入和行波输入下数值模拟得到结构动力反应分析的对比。结果表明:考虑行波效应会对一端滑动支座相对位移产生影响,因此考虑行波效应研究高架桥地震反应是极其重要的。  相似文献   

18.
以斜拉桥作为研究对象,对2个斜拉桥模型的动力特性进行了分析,又对2桥在一致激励与多点激励作用下的地震反应进行了比较分析.计算结果表明:大跨度斜拉桥的墩、塔、梁的连接方式对整个桥梁体系的动力特性影响很大,必须正确考虑;随着跨径的增大,一致激励和多点激励都将会显著增大塔的纵、横向位移和主梁竖向位移,对塔和主梁抗震设计均不利;同时,多点激励对斜拉桥的动力反应位移有显著影响,特别是在桥梁中比较柔的部位,设计时必须引起足够重视.  相似文献   

19.
以琼州海峡跨海工程2×1500m三塔斜拉桥设计方案为背景,采用非线性时程分析方法,基于利用附加装置改善大跨径桥梁结构性能的设计思想,研究超大跨径三塔斜拉桥适宜的横向抗震结构体系。首先针对附加刚度和附加阻尼的设计参数进行优化分析,然后分析不同横向约束结构体系对超大跨径三塔斜拉桥横向抗震性能的影响。结果表明:对于超大跨径三塔斜拉桥,选择适宜的横向弹性+阻尼组合体系能够更经济有效地改善结构受力性能,在降低主塔地震响应和主梁地震应力的同时还能较好地控制塔梁间横向相对位移,是超大跨径三塔斜拉桥较为理想的横向抗震结构体系。  相似文献   

20.
为了研究山区高墩桥梁在地震动作用下的特殊抗震性能,基于随机振动理论,研究了场地效应、相干效应及行波效应对高墩桥梁在强地震多点激励下的随机响应规律,及墩高变化对高墩桥梁地震响应规律的影响.研究表明:场地效应对高墩桥梁地震响应影响明显,软场地墩的位移值约为硬场地的12倍,行波效应的影响次之,相干效应的影响最小.场地效应对桥梁的影响大小取决于场地卓越频率是否接近于桥梁自振频率;行波效应是不可忽略的一个重要因素,中场地时桥墩最小的位移值约为最大值的30%,软场地时最小值约为最大值的60%;与场地效应和行波效应相比,部分相干效应对桥墩顺桥向位移影响较小.对于山区高墩桥梁随机地震响应分析,考虑地震动空间效应的多点激励分析是必要的.应对有可能的桥型(不同墩高和墩高差)进行分析,以确定地震力最小的桥型并注意桥梁截面抗力的提升和附加减震措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号