首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
大体积混凝土施工裂缝控制技术   总被引:2,自引:0,他引:2  
大体积混凝土施工中,由于水泥水化热引起混凝土浇注内部温度和温度应力剧烈变化,由此而产生的温度应力是导致混凝土产生裂缝的主要原因。裂缝会影响混凝土的整体性、防水性和使用的耐久性,因此如何控制裂缝是混凝土施工成败的关键。本结合工程实际,分析了控制大体积混凝土施工的方法及措施,取得了良好的施工效果。  相似文献   

2.
大体积混凝土温控施工观测及分析   总被引:2,自引:0,他引:2  
大体积砼与一般的钢筋砼结构相比具有形体庞大、混凝土数量多、工程条件复杂、施工技术和质量要求较高等特点。大体积混凝土施工时遇到的普遍问题是温度裂缝。由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况时,混凝土内部会产生较大的温度应力,导致裂缝产生。因此,大体积混凝土施工中的温度监控是控制裂缝产生的关键。总结介绍湛江海湾大桥主墩承台大体积混凝土的施工控制措施。  相似文献   

3.
承台大体积混凝土水化热分析与施工控制   总被引:5,自引:0,他引:5  
结合援孟加拉国中孟友谊六桥主桥承台设计与施工,利用Midas/Civil有限元计算分析软件对承台大体积混凝土水化热进行仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,混凝土质量优良,没有出现温度裂缝,可供类似大体积混凝土设计与施工借鉴。  相似文献   

4.
混凝土的体积大,水化热造成温差大,从而容易产生温度应力,形成裂缝问题,在施工中如何采取措施避免裂缝,提高混凝土的质量,结合深圳新区大道主体结构大体积混凝土浇筑的工程实践,从混凝土原材料选择、配合比设计和施工措施等方面进行总结,有关经验可供相关专业人员参考。  相似文献   

5.
王军  李峰  王韶翔 《公路》2007,(11):173-177
大体积混凝土在现代的土木工程施工中已非常普遍,但常常出现裂缝和变形,严重影响了结构的整体性和耐久性。本文通过利用结构有限元分析程序MIDAS/Civil对一座待建桥梁承台进行水化热分析研究,总结了承台混凝土在水化热影响下温度的分布规律以及温度随时间的变化规律,同时提出了防止混凝土开裂的一些应对措施。  相似文献   

6.
对于水坝、建筑及桥梁工程中的大体积混凝土结构,施工期因水化热引起的混凝土内外温差及温度应力,容易导致混凝土早期裂缝,影响结构的正常使用和安全性.因此,大体积混凝土结构施工期的温控标准和温度控制非常重要.采用大体积混凝土施工期温度场和温度应力场分析程序包进行了特大桥承台混凝土施工温度场和温度应力场计算,提出防止产生温度裂...  相似文献   

7.
随着科学技术的进步,新材料、新技术的广泛应用,桥梁跨度越来越大,大体积混凝土应用越来越广泛,承台混凝土体积越大,混凝土内部水化热聚集就越多,内外散热不均匀不一致,使混凝土内部产生较大的温度应力,导致承台混凝土开裂,给工程质量埋下了严重的质量隐患,因此,承台大体积混凝土设计、施工时如何降低混凝土内部温度,如何降低混凝土内外温差,防止裂缝产生是关键。本文结合临吉高速公路壶口黄河大桥主墩承台设计及施工要求,分析大体积混凝土裂缝成因和控制措施。  相似文献   

8.
曾波  兰品万 《中外公路》2004,24(5):65-67
大体积混凝土施工时,由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况下,混凝土内部会产生较大的温度应力。导致裂缝产生,为结构埋下严重的质量隐患。因此。大体积混凝土施工中的温度监控是控制裂缝产生的关键。文中介绍了岳阳洞庭湖大桥主墩大体积混凝土吊箱承台在设计和施工中对裂缝的控制情况。  相似文献   

9.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

10.
《公路》2015,(9)
随着桥梁施工建造技术的不断发展,建造特大型桥梁所涉及的大体积混凝土承台施工也越来越多,如不采取措施控制水化热,混凝土内部温度将急剧升高,势必会产生温度裂缝,严重影响工程质量,因此,需要通过采取分层浇筑、优化配合比设计、模拟承台混凝土水化热计算、控制混凝土入模温度和冷却水循环等针对性措施对混凝土内部温度进行有效控制,使混凝土内部温度的变化在允许范围内就显得尤为重要。针对某特大桥(斜拉桥)主塔大体积混凝土承台施工的实际情况,从混凝土施工温度控制方面进行了分析和介绍,以为同类型大体积承台混凝土施工提供可资借鉴的参考。  相似文献   

11.
桥梁工程大体积混凝土的温控与防裂对策   总被引:1,自引:0,他引:1  
大型桥梁承台往往采用大体积混凝土建造。大体积混凝土的水泥水化热使结构产生温度较高,容易产生温度裂缝等。文章分析了温度裂缝产生的原因及其危害,并从设计、原材料和施工三个方面,提出了温控与防裂的对策。  相似文献   

12.
大体积混凝土的裂缝大部分是由于混凝土降温产生的温度应力引起的,采取有效措施防止温度应力造成混凝土表面和内部出现有害裂缝,一直是大体积混凝土结构施工中的技术难题。本文对大体积混凝土裂缝的成因进行了分析,探讨大体积混凝土的施工技术及要点,希望对建筑工程施工从业者在大体积混凝土的施工管理过程中能有所借鉴。  相似文献   

13.
在特大承台大体积混凝土施工时,水化热的控制是施工的重点和难点,对工程质量有比较大的影响。文章以实际工程为例,对特大承台大体积混凝土水化热情况进行了分析,然后针对性地提出了温度控制措施,有效降低了承台内外部的温度差异,避免混凝土结构出现裂缝。  相似文献   

14.
重力式锚碇是典型的大体积混凝土结构,施工过程中的水化热应予以严格控制,避免产生温度裂缝.以郭家沱大桥锚碇为例,在施工前进行水化热分析,制定相应的大体积混凝土温控措施.经现场监测,各项指标均满足标准限值,未出现混凝土温度裂缝,证明温控措施有效,确保了锚碇质量.  相似文献   

15.
《公路》2017,(5)
桥梁大体积混凝土承台,水泥凝结时,会产生大量的水化热,由于混凝土是绝热材料,因此产生的水化热不能及时释放,导致大体积混凝土内部温度不断升高,形成混凝土的内外温差,当温差过大或升降速度过快时,混凝土就会出现温度裂缝。温度裂缝的产生会降低承台基础的承载能力,降低混凝土的耐久性,造成桥梁安全隐患,危害极大。通过银百高速公路(G69)建设项目甜永段无日天沟特大桥承台大体积混凝土水化热的温度控制实例,分析和研究大体积混凝土设计、实时监测混凝土在施工、养护期间,沿承台长度、高度和宽度方向的混凝土温度变化状态,实行信息化控制,及时优化设计方案、调整保温及养护措施,使混凝土温度梯度和温度增量不致过大,有效控制有害裂缝的产生。  相似文献   

16.
由大体积混凝土浇筑产生的温度应力而导致的混凝土开裂是比较普遍的现象,水化热产生的裂缝尤其是贯穿结构内部的裂缝对结构的承载力、防水能力,以及耐久性都会产生不良的影响。目前应用有限元仿真进行的数值计算方法是大体积混凝土水化热计算常见的方法之一。文中用MIDAS/CIVIL 2012有限元分析软件对8号主塔承台进行水化热的计算分析,通过对不布设冷水管和布设冷水管的工况进行计算,得到承台内部对应位置的温度均大幅度降低,同时布设冷水管后承台内不利节点的应力也有大幅度的降低,可有效控制混凝土开裂。  相似文献   

17.
根据热传导有限单元法原理,采用热-应力耦合的方法对混凝土浇筑水化热引起的斜拉桥空心塔柱的温度效应进行分析,运用ANSYS进行仿真分析,得到温度场分布特点以及温度应力的发展规律,为控制施工中的水化热温度裂缝提供了理论依据以及防止开裂措施。  相似文献   

18.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

19.
以重庆某大桥主墩承台为对象,采用C40低温升低收缩磷渣大体积混凝土,利用有限元软件对其温度应力监测数值进行了仿真研究。结果表明:利用有限元软件,仿真计算低温升低收缩磷渣大体积混凝土水化热,可对混凝土水化热实际情况进行较好的模拟及预测。利用有限元软件,对大桥4#承台水化热进行仿真分析,通过对冷却管采取降温措施,发现在承台内部,最高温为71.25℃,最大的内外温差为18.15℃,水化热得到控制,说明采用冷却管降温可行。通过检测拆模后大桥承台的外观,发现无温度裂缝产生,说明采取合理措施控制大体积混凝土水化热温升,能有效控制温度裂缝的产生。  相似文献   

20.
王聪  彭浩 《隧道建设》2020,40(10):1433-1440
襄阳市东西轴线项目沉管预制采用节段整体式全断面顺浇法,具有高强度、大断面、大体积的特点,管节控裂难度较大。为验证混凝土配合比、施工工艺以及裂缝控制措施的可行性及可靠性,采用Midas FEA软件,进行沉管管节在设计工况下的水化热温度应力数值仿真模拟计算,分析管节浇筑过程中混凝土内部温度及应力变化情况。数值仿真结果表明,管节连接处抗裂安全系数较低。进而选取理论开裂风险最高的边墙倒角位置和施工难度最高的中隔墙倒角位置进行模型试验,实际模拟钢筋及预埋件施工工序,全面检验原材料、配合比和混凝土施工性能的可靠性,并布设智能温度监测系统。通过局部块体试验,合理优化钢筋及预埋件的结构形式和安装工序,验证混凝土性能并优选施工配合比;同时,通过提出的原材料温控标准对模型试验进行温度智能监测数据分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号