首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
<正>4月11日,中国中车株洲电力机车有限公司与马来西亚交通部在湖南长沙签订13列混合动力电动车组和9列现代超级动车组共两个项目的购销合同。这是中车株机公司旗下马来西亚中车轨道交通装备有限公司实现当地营销的第一单,两款动车组首列车将于2018年底交付。混合动力电动车组是中车株机公司为马来西亚量身打造的"米  相似文献   

2.
分析了超级电容储能系统的工作原理,以TMS320F28335作为主控芯片,采用双闭环策略控制超级电容的充电与放电。应用Maxwell的超级电容器组与双向DC/DC变流器构建了超级电容储能系统。列车制动时,超级电容充电,吸收再生电能;在车辆起动或无电区时,超级电容放电,为列车提供电能。实现节能减排功能,具有很好的经济和社会效益。  相似文献   

3.
文章介绍马来西亚混合动力交流传动动车组制动原理,对其制动电阻的结构特点、性能以及型式试验进行了分析说明。该制动电阻具有结构简单、维护方便的特点。试验结果表明该型制动电阻能够完全满足动车组运行的要求。  相似文献   

4.
城市轨道交通具有站间距离短、车辆运行密度高等特点,列车在频繁的起动与制动过程中会产生数量可观的制动能量。目前再生制动能量回收较多采用电阻吸收或逆变回馈加电阻的形式,能量回收率和利用率都较低。根据逆变回馈和电容储能的特点,组成逆变+储能的新型再生制动能量吸收装置:直流母线制动电能通过逆变器接入400 V车站低压配电系统,超级电容通过DC/DC双向变换器并联在直流母线上,较平稳的制动功率直接经逆变器给车站负荷供电,较大的尖峰功率由超级电容吸收,再供负荷或车辆起动加速用。根据列车的制动特性,以某地铁线路实际数据为例,计算了列车实际的制动功率和能量,给出了逆变器和储能的功率及容量配置方案。所提方案能够完全吸收利用再生制动能量,且所需储能容量较小。  相似文献   

5.
轨道交通车辆逐渐由从高速、重载向绿色、智能技术转型,而超级电容的高比能、高功率、长寿命的优点,使其在轨道交通车辆领域获得快速发展。从近些年超级电容在轨道交通车辆的应用出发,重点阐述了超级电容在有轨电车的牵引、制动,地铁的制动能量回收、应急牵引,混合动力动车组的牵引加速、制动等方面的技术特点及进展。  相似文献   

6.
某强混合动力动车组采用储能电源和动力包的混合动力方案,其中的储能电源采用车底悬挂方式。文章结合动车组技术要求,详细阐述了采用客室空调废排作为冷却风的储能电源通风结构设计和风道控制方法,散热仿真结果和实际运用数据表明:该通风散热设计既可以保证储能电源的散热环境,又能有效提高能源利用率。  相似文献   

7.
锂电池与超级电容相组合的混合储能系统作为地铁、轻轨列车、现代有轨电车等电力牵引列车的车载储能系统,不仅能满足列车对于高能量和高功率的需求,而且具有整体尺寸小、使用周期长、成本低、可回收大部分列车制动能量等优点。本文对混合储能系统的控制方案、控制策略进行分析研究,在建立混合储能系统控制模型的基础上,提出一种灵活有效的新型主从控制方案,并基于此控制方案通过设计不同控制策略实现混合储能系统的多种控制目标。  相似文献   

8.
国外资讯     
瑞士日内瓦试验评估有轨电车超级再生储能电容 瑞士日内瓦有轨电车TPG正在进行超级电容诣能装置原型试验,该装置可使制动能量回收并使电车在没有外部电源供应下短距离运行。1t重的超级电容器被安装住由Stadler公司制造的Tallglo有轨电车车顶,它可以使有轨电车以55km/h速度运行,并能有效地吸收和释放制动电流。再生制动电能在列车开始启动时被使用,  相似文献   

9.
在蓄电池电力工程车上采用复合电源(蓄电池+超级电容)系统,可以充分发挥蓄电池和超级电容各自的优势,从而显著改善电力工程车的动力性能,提高制动能量回收率,达到节约能源和提高经济效益的目的.文章结合设定工况,分析了蓄电池电力工程车复合电源的参数,并利用功率约束法,计算出了复合电源系统中超级电容的规模和数量.  相似文献   

10.
基于超级电容的地铁列车再生制动能量利用分析   总被引:2,自引:0,他引:2  
为吸收地铁列车再生制动能量,对比了多种能量回收技术。研究一种基于非隔离双向DC/DC变换器的超级电容储能装置,分析了其工作原理和结构特点。在列车制动时,储能装置吸收制动能量,列车加速时释放能量,减少了能源浪费。根据地铁运行工况,分析了储能装置容量配置及能量管理控制策略。通过仿真验证了方案的可行性。  相似文献   

11.
针对燃料电池和超级电容混合动力有轨电车的列车控制和管理系统(TCMS)软件测试需求,运用Control Build仿真软件搭建了适用于燃料电池和超级电容混合动力列车的TCMS软件测试平台。该平台在具有列车电路和常用子系统仿真功能上,采用拟合方法搭建了燃料电池模型、超级电容模型、动力电池模型和列车能量流动模型,为TCMS软件进行混合动力能量管理和整车能量管理提供测试环境,提高了燃料电池超级电容有轨电车TCMS软件测试的范围和效率。  相似文献   

12.
设计了一种基于"燃料电池+超级电容+动力电池"的新型混合动力100%低地板有轨电车。针对燃料电池混合动力系统的特点,进行了新型有轨电车混合动力系统能量管理策略,牵引系统的参数匹配设计,以及余热利用方案设计。在此基础上,确定了有轨电车的主要技术规格和设计参数,并对燃料电池混合动力系统、牵引、制动、列车网络等系统主要特点进行了介绍。车辆经过型式试验验证,各项性能指标完全满足设计要求,此新型有轨电车已成功投入运营。  相似文献   

13.
在城轨交通供电系统中应用超级电容储能装置可以有效回收列车制动能量,抑制直流网压波动。首先建立了包含列车和超级电容储能装置的城轨交通供电系统仿真平台,且综合考虑节能电量、投资成本和电价等因素,计算超级电容储能装置的经济效率,并将其作为储能装置能量管理和容量配置优化的目标函数。提出了一种结合城市轨道交通供电系统仿真模拟平台和遗传算法的优化方法,实现储能装置能量管理控制参数和容量配置方案的同时优化。最后以某条地铁线路为例,通过仿真对比验证论文提出优化方法的有效性,使应用于城轨交通供电系统的超级电容储能装置得到最大的经济效率。  相似文献   

14.
正地铁再生制动能量利用系统北京鼎汉新近推出的地铁再生制动能通利用系统是将地铁列车制动时产生的再生制动能量进行回收的一款节能环保产品。鼎汉同时具有电容储能系统和中压逆变回馈系统的成熟产品,并通过相关质量检测认证。电容储能系统:主要由双向DC/DC变流器和超级电容柜组成,将处于再生制动工况下的列车反馈的制动能量吸收到大容量电容器组中,当列车出站或供电区间有列车需要取流时将所储存的电能释放出去,使牵引网电压稳定在设定范围内,起到削峰填谷作用。  相似文献   

15.
超级电容在地铁制动能量回收中的应用研究   总被引:3,自引:0,他引:3  
针对机车启动、制动对直流母线电压的影响,提出一种基于超级电容的储能装置,该装置通过双向DC-DC变换器为列车提供牵引或者吸收再生制动过程的暂态能量,分析了超级电容储能系统充放电控制策略,搭建了一个750V直流电气化铁路仿真平台,仿真结果验证了超级电容储能系统能够维持直流母线电压稳定,有效地防止城市轨道交通供电系统中电力负荷波动和避免再生制动能量的浪费。  相似文献   

16.
<正>2014年12月31日,广州海珠有轨电车示范线开通,广州市民试乘世界首列采用超级电容的储能式100%低地板有轨电车。该款新型有轨电车是一种非传统受电式、完全采用超级电容储能电源驱动的有轨电车。电车不排放废气,运行无需架空受电网,能在乘客上下车的20~30 s时间里快速充满电,一次充电后能连续行驶4 km。列车以及其核心元器件——超级电容,都为南车株洲电力机车有限  相似文献   

17.
设计了由燃料电池、动力电池、超级电容3个动力单元组成的氢燃料电池有轨电车混合动力系统结构,并研究了车辆驱动模式和制动模式下的控制方法。驱动模式下,基于母线电压控制方式,按照燃料电池、动力电池、超级电容的先后次序,依次切入动力单元,响应车辆驱动功率要求;制动模式下,按照超级电容、动力电池先后顺序,吸收回馈电能。解决了燃料电池与复合储能系统双模式运行条件下的动力匹配问题,使车辆达到设计的目标最高车速,并改善了经济性。通过实车测试,分析了运行工况、氢气消耗和燃料电池功率变化情况,验证了混合动力系统结构和控制方法的可行性。  相似文献   

18.
城市轨道交通列车再生制动能量利用系统包括再生制动能量回馈系统、再生制动能量储存系统和混合型再生制动能量利用系统。回馈型系统可实现交流电网与直流母线的能量双向流动;储能型系统是将列车多余制动能量存储到储能单元中,起动时再将能量释放出来供列车使用,储能元件有超级电容、蓄电池及飞轮;混合型系统是回馈型和储能型的组合,其功能及性能兼具2种系统的特点。3种系统方案各有特点,均可实现列车制动能量回馈利用,减少电网能耗,不仅在节能环保方面有重要意义,对于整个城市轨道交通行业降低运营成本将具有重大影响。  相似文献   

19.
结合城市轨道交通车辆的电气系统及储能电源的工作原理,介绍一种应用于混合动力动车组的储能电源总体设计,从储能电源的主要技术参数、电气原理,以及保护电路等方面阐述该储能电源的技术优势和特点。  相似文献   

20.
通过分析建立轨道交通车辆制动车载储能系统的必要性,提出使用超级电容型储能系统的合理性。建立了城市轨道交通车辆制动车载储能系统模型,介绍了制动车载储能系统的工作原理,分析了主要器件参数的选取依据,其中包括超级电容电压范围的选取、超级电容器容量、超级电容器数量和电感量的确定。通过仿真计算再生制动能量的大小,从基于功率—容量约束确定最优初始充电电压,完成了超级电容阵列优化配置,为后期储能系统的整体结构设计以及电感和电容的选取提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号