首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对大体积混凝土水化热过程中的温度采用风冷却技术的可行性进行探讨.基于同等条件下对大体积混凝土承台进行有限元模拟,与实际监测数据进行对比研究.在新型风冷却与传统水冷却两种不同温控手段中,分别采用Midas/FEA建立模型,两种温控在降温过程中,温度峰值在规范容许范围内,温度变化曲线较为平缓,同时数值模拟计算值与实际监测数据近似,证实大体积混凝土采用风冷却技术有效可行.  相似文献   

2.
该文指出大体积混凝土温度控制是施工中的一个难点,通水冷却是大体积混凝土的重要温控措施之一。  相似文献   

3.
以上海市张泾河泵闸工程为例,从材料性能、通水冷却及保温、温控监测等方面探讨了泵闸工程大体积混凝土施工期精细化温控防裂技术。通过室内试验及现场大体积混凝土试验获得仿真分析所需的材料热力学参数及表面散热系数,并用于现场混凝土温度场的反馈分析。最后对比分析了通水流量及冷却水管规格对混凝土温度场的影响,结果显示管材及管径对混凝土最高温度及温降速率有较大影响,建议早期采用管径40 mm以上钢管及4 m3/h以上冷却水流量。  相似文献   

4.
彭再勇 《隧道建设》2016,36(9):1139-1146
红谷双向6车道沉管隧道管节具有横断面尺寸大且结构形式复杂、一次浇筑混凝土体量大、内外温差及温度应力大和防渗抗裂性能要求高的特点。针对这些特点首先通过水化放热性能试验和小圆环开裂试验优选了胶凝材料体系,进而通过力学性能、耐久性能及抗渗性能试验确定了低热低收缩的混凝土配合比,然后开展现浇试块和管段的温度测试,分析大体积混凝土内温度变化规律和冷却水管的降温作用,并结合温控测试与信息化施工技术指导了后续管段预制中冷却水管的布置及相关温控防裂措施的动态部署。最后结合试验分析结果与现场施工环境,形成了管节混凝土入模温度控制、分段分次分节浇筑和快插慢拔捣固工艺、循环冷却水管通水时间和管节拆模时间控制、管节各部位针对性养护措施等贯穿管节预制全过程的防裂技术,确保了沉管管节大体积混凝土的防裂抗渗性能。  相似文献   

5.
通麦特大桥位于国道G318西藏自治区通麦段上,桥位所在处为温差大的高原地区。采用有限元模型进行计算分析和温控方式比选,确定通麦特大桥锚碇混凝土采用无降温管施工。施工过程中采取各种减小大体积混凝土内外温差的措施,并对混凝土进行温度控制和监测。检测结果表明,大体积锚碇混凝土未产生有害裂纹,检测结果和计算结果吻合较好。锚碇无降温管大体积混凝土温控技术可为西藏自治区同类桥梁锚碇混凝土施工提供参考。  相似文献   

6.
刘方华 《公路》2022,67(3):143-147
在传统大体积混凝土施工中采用冷却水管进行混凝土内部降温,达到內降外保的效果。采用混凝土水化热温升抑制剂,取消冷却水管,既可达到大体积混凝土温控要求,又可以减少冷却水管的投入。  相似文献   

7.
大体积混凝土温度控制与防裂是一项系统工程,施工前和施工中的系列温控措施均对后期混凝土的内外温差和抗裂性能有重要影响,在设计和施工中必须制定合理的温控指标和采取严格的温控措施,将裂缝的生成和扩展控制到最小程度。该文以澧水大桥大体积混凝土工程为背景,通过优化混凝土配合比、原材料温度控制、有限元仿真计算、施工中的温度控制与监测、冷却降温等一系列具体温控措施的应用,有效地防控了温度裂缝的出现,为同类工程积累了经验。  相似文献   

8.
依托某双塔双索面梁斜拉桥,基于有限元软件MIDAS/Civil对大体积混凝土承台的水化热温度场进行了仿真模拟,详细研究了水化热温度场及混凝土内外温差等变化规律。并基于有限元研究成果,采取了大体积混凝土配合比优化设计、原材料预冷、预埋水管冷却、优化浇筑顺序及养护等多个温度控制措施。实践证明,上述措施可以有效控制混凝土水化热,提高混凝土施工质量,降低施工成本,从而获得良好的经济及技术效益。  相似文献   

9.
《公路》2017,(6)
依托某大桥承台的大体积混凝土在10℃和20℃施工温度工况,对混凝土的内外温度及温差进行了计算,基于计算结果,给出了总体温控施工方案。结果表明:在10℃和20℃施工温度下,大体积混凝土施工内外温差均不大于25℃,采用合理厚度的泡沫板保温措施进行承台混凝土养护即可满足混凝土温控要求;建议采用安装冷却水管、埋设测温监控、控制混凝土浇筑和养护质量等方法来进行大体积混凝土的养护及温度控制。  相似文献   

10.
介绍采用降低水化热措施,通水人工冷却降水化热温升和掺膨胀剂补偿收缩变形相结合的方法,解决桩筏基础筏板大体积混凝土结构温度裂缝,经实践可以取得很好效果。  相似文献   

11.
为避免特大方量异形结构大体积混凝土施工过程中产生温度裂缝,以沪通长江大桥桥塔下横梁为工程背景,采用MIDAS软件建立大型有限元温度场模型。针对下横梁大体积(11 600m~3)、高强度(C60)、结构不规则的特点,以内部最高温度及最大主拉应力为主控参数,优化冷却水管布置及相关参数选取。结果表明:冷却水管布置的间距越小、根数越多,下横梁混凝土降温越快,这会造成混凝土内部收缩过快,使得最大主拉应力变大;冷却水管通水温度越低、通水时间越长、通水流速越大,会导致与混凝土内部温差过大,增加收缩应力。实践证明,采用优化的方案后,各项温度参数均满足规范要求,有效地避免了结构产生有害的温度裂缝。  相似文献   

12.
对于高空高强大体积混凝土,由于实际施工条件的限制,规范规定的冷却水温与混凝土温差、降温速率等温控指标往往较难实现。以贵州平塘特大桥为背景,参照规范"大体积混凝土内表温差应不大于25℃"的温控指标,对人工冷却降温措施进行了优化。通过主塔实心段温控过程中实测温度结果与有限元仿真模拟的对比分析,提出了冷却水温与降温速率控制指标的优化方法。按此方法进行温控的平塘特大桥主塔大体积混凝土未出现有害裂缝,取得了良好的控制效果。此方法可为同类大体积混凝土温控提供参考与借鉴。  相似文献   

13.
宜昌庙嘴长江大桥工程桥塔墩承台及锚碇均为大体积混凝土结构,为防止施工过程中结构出现危害性裂缝,对其进行温度控制。基于现行规范和设计要求,提出可行的温控控制标准,采用 MIDAS 水化热模块计算混凝土的温度场和应力场,根据计算结果及相关经验制定冷却水自循环控制系统及其它混凝土表面养护和内部降温等措施,温控过程中布置温度测点实时监测混凝土内、外部的温度,并与计算值进行对比。结果表明,混凝土浇筑体最高温度值、里表温差、降温速率等温度控制指标均满足设计和规范要求,该桥采用针对性强、科学合理的控制措施,有效地降低了大体积混凝土内外温差,在已完成的各桥塔墩承台及锚碇基础部分均未发现明显裂缝。  相似文献   

14.
灌河大桥主塔承台大体积混凝土施工时,根据仿真计算得出温度应力场,提出了相应的温控标准,采取了优化配合比、匀质化施工、混凝土配制环节的原材料温度控制和浇注环节的冷却降温等措施。浇注过程中开展温度监控,动态调整温控措施,使混凝土内部温度和内表温差均控制在标准范围内,从而有效地控制了混凝土内部的温度应力,防止了大体积混凝土的开裂,提高了构件耐久性。  相似文献   

15.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

16.
《中外公路》2021,41(3):83-88
桥梁的承台混凝土体积大,施工措施不当易产生温度裂缝,从而影响桥梁结构的耐久性,因此有必要对大体积混凝土施工温度场及温控技术进行研究。该文以南沙港铁路西江特大桥承台施工为背景,对自然冷却时温度场的变化规律进行数值分析,并对冷却水管的布置方式进行对比分析,进而开展承台智能温控系统设计和现场施工实践。结果表明:夏季自然冷却状态下,承台内部大部分区域温度场趋于一致,在靠近外侧面附近温度略有下降,在靠近顶部附近温度梯度较大;冷却管长度对散热影响较小,分区布置管道(冷却水从独立直管进入,从蛇形管流出)降温效率高,所设计并采用的智能温控系统具有较好的温控效果。  相似文献   

17.
为研究塑料波纹管道作为冷却管的降温效应,以望东长江大桥索塔下横梁为研究对象,对传统金属冷却管降温措施进行了改进,提出采用空气压缩机向波纹管道内压"水雾"的降温措施。并通过试验测试了波纹管道内的"水雾"降温效应及热导性。在此基础上,采用桥梁商业程序MIDAS.FE建立下横梁实体有限元模型,并对其进行水化热仿真分析,结果表明:冷管对混凝土水化热降温效应明显,有无冷管混凝土最高温度相差12℃。该降温措施构思新颖、就地取材,为大体积预应力混凝土温控提供了一种全新的解决办法。  相似文献   

18.
斜拉桥下塔柱大体积混凝土温控研究   总被引:1,自引:0,他引:1  
大体积混凝土由于其聚集的水化热高且混凝土散热困难,因此温度裂缝控制是大体积混凝土施工的关键。该文结合工程实例,依据温控标准,提出温度控制措施,通过Midas软件模拟大体积混凝土的温度场,分析混凝土浇筑、水管冷却及边界条件等因素对其温控的影响,并制定相应的温度监测方法以检验温控标准和措施效果。其数值分析与现场监测结果达到较好的吻合。  相似文献   

19.
在大体积混凝土施工中,温度裂缝是最易产生的病害,也是施工控制的重点和难点.对于大体积混凝土的浇筑,由于混凝土体积较大,混凝土内水化热作用产生的温度升高较快,而体积大散热较慢,致使混凝土体内温度较高、混凝土表里温差较大,极易引起混凝土开裂.因此,对大体积混凝土进行温度监测并实施有效控制十分必要.通过在混凝土内布设温度传感监测系统进行温度监测,并在混凝土内埋设通水冷却系统,根据温度监测数据实时进行有效的温度控制,以降低混凝土体内温度,减少表里温差,使混凝土表里温差始终处在允许范围内,避免温度裂缝的产生,保证大体积混凝土的工程质量.  相似文献   

20.
虎门大桥大体积混凝土温度控制技术及施工工艺   总被引:1,自引:0,他引:1  
朱战良  肖文 《桥梁建设》1997,(4):48-50,54
以广东虎门大桥大体积混凝土施工为背景,就桥梁工程大体积混凝土的温度控制和施工工艺进行了论述,并提出了大体积混凝土施工的工艺及温度控制措施,对常用的温差控制概念提出了不同的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号