首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桥梁深水基础钢板桩围堰受力分析与应用   总被引:2,自引:0,他引:2  
为研究钢板桩围堰结构受力情况及选择合理的受力分析方法,以沪杭高速铁路横潦泾桥为例,分别采用空间有限元、平面有限元和等值梁法对钢板桩围堰的受力情况进行了对比分析,并与现场实测值进行比较,系统探讨了深水基础钢板桩围堰结构的合理计算方法.研究结果表明:空间有限元法能较好地反映钢板桩围堰实际受力状况,采用简化的等值梁法计算围堰结构偏于安全,平面有限元法分析结果介于两者之间,且实际工程中宜根据水压力特征合理选取结构分析方法.  相似文献   

2.
珠海横琴二桥跨天沐河段桥型为2联3×50m预应力钢筋混凝土宽幅连续箱梁桥,该桥94号~97号墩承台地处深厚软弱地质条件,为确保钢板桩围堰支护结构的稳定及安全性,综合考虑承台结构尺寸、承台埋深、地质及水文条件后,确定采用复合地基处理与钢板桩围堰相结合的方案。钢板桩围堰平面尺寸为12.2m×11m,拉森Ⅳ型Q345B钢板桩长18m,围堰内设2道内支撑。封底混凝土面下淤泥层采用9m长水泥搅拌桩加固成复合地基。采用等值梁法对钢板桩围堰进行力学计算,并采用MIDAS Civil有限元软件建立最不利工况梁单元模型,采用容许应力法对钢板桩强度、内支撑、基坑底土抗隆起进行验算,结果均满足规范要求。  相似文献   

3.
本文介绍了小榄水道桥主L2号墩承台钢板桩围堰的设计及施工方案,设计中选用钢板桩作为主受力结构,选用钢管作为内支撑结构,围堰结构采用手动计算为主,软件辅助的方法进行验算。土压力采用朗金理论进行计算,钢板桩结构采用等值梁法和盾恩近似法进行计算。因水的流速很小,在围堰结构验算时忽略不计。  相似文献   

4.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术。通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算。依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况。试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大。  相似文献   

5.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术.通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算.依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况.试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大.  相似文献   

6.
《中外公路》2021,41(4):225-229
为了确保钢板桩围堰施工的安全性,以湖北215省道毛市大桥14~#墩钢围堰为工程背景,分别采用了平面有限元和空间有限元分析法对钢板桩围堰多个工况下的受力情况进行了分析,并与实测值进行了对比讨论。结果表明:14~#墩钢板桩围堰刚度和强度满足规范要求,可以安全施工;采用的两种分析方法均能满足工程需求,平面有限元法相对简单,计算结果较为保守,而空间有限元法计算结果更接近实测值,但分析方法相对复杂。  相似文献   

7.
芒稻河特大桥主桥为(77+3×130+82)m预应力混凝土刚构-连续梁组合体系桥,主墩基础位于深水区,承台施工时抽水最大水头达18.7m。采用钢板桩围堰施工承台,围堰最大平面尺寸为45.6m×16.8m,采用拉森Ⅳw型钢板桩,单根桩长36m,围堰内设置5道内支撑。采用有限元软件,计算围堰3个主要施工工况下钢板桩和内支撑的变形、应力,以及围堰封底抽水完成工况下封底混凝土的抗浮安全系数和应力,计算结果均满足要求。施工时,采用定位导向架和平面定位框限位插打钢板桩,内支撑采用工厂拼装现场分层整体吊装、水下抄垫等工艺,应用水下分阶段吸泥、水下二次封底等施工技术,实现了深水钢板桩围堰快速安全施工。  相似文献   

8.
文章采用midas civil对某大桥单支撑浅埋式钢板桩支护进行整体建模分析,并结合采用等值梁法的简化分析结果表明:相对而言,采用midas civil对基坑钢板桩支护进行整体建模,分析模拟了桩土、桩与围囹以及钢板桩之间的相互作用,与钢板桩的实际受力情况更加贴合,得到了钢板桩在土压力作用下的钢板桩围堰整体应力和变形分布规律,计算结果更加准确。  相似文献   

9.
采用拉森IV型钢板桩围堰做水中墩承台,考虑到承台施工的实际情况,确定围堰中共设五道支撑,以便于承托承台施工。以大型桥梁主墩承台围堰为例,介绍了对拉森钢板桩围堰的结构形式、受力状态与计算方法,并通过解析法与递推法提出了围堰内支撑布置的最合适方案以及确定方法以及拉森钢板桩围堰的施工工艺做了仔细的分析。  相似文献   

10.
以深中通道东泄洪区非通航孔桥9#墩承台为背景,从围堰结构形式、钢板桩截面型号、施工工序、支撑体系等方面,介绍采用先支法施工工艺的装配式组合钢板桩围堰结构,采用有限元法对围堰施工全过程进行数值分析。帽形钢板桩+H形型钢的组合截面大大提高了钢板桩的刚度;先支法施工工艺使板桩和内支撑受力更加合理,使钢板桩围堰适用于更大水深;装配式内支撑结构体系,降低了钢板桩换撑的安全隐患,且可操作性强、构件装配化程度高,提高了围堰内支撑体系转换和材料周转使用效率,缩短工期,降低施工成本。  相似文献   

11.
以某跨河大桥主墩承台基坑施工为例,介绍了密扣式拉森钢板桩围堰支护方法;在确定施工总体思路和施工顺序的基础上,运用MIDAS/Civil软件建立力学模型,依据施工过程确定计算工况,对围檩与支撑构件的受力状况进行计算,验算了钢板桩的实际受力及支护结构的稳定性;并依据工程进度对钢板桩变形及内撑轴力进行了实时监控,确保支护结构的安全。  相似文献   

12.
某大桥主墩钢板桩围堰施工中,由于钢板桩置入河床的深度大,在抽水过程中围堰内外侧的水压力差大,各层内支撑、钢板桩承受很大的水压力,故保证钢板桩及各层内支撑的结构安全、稳定性在施工中至关重要.笔者采用大型有限元Ansys软件对围堰结构进行建模,分析和计算了各种工况下钢板桩及各层内支撑的强度、刚度和稳定性.结果表明,围堰结构的设计满足强度、刚度和稳定性要求,可以按设计安全施工.  相似文献   

13.
重庆官栈河大桥主桥为(62+110+62) m三跨连续刚构桥,主墩基础采用锁口钢管桩围堰施工。围堰施工正常水位+325.300 m,施工期控制水位+330.500 m。在该桥主墩围堰完成四周锁口钢管桩插打及前4道内支撑安装后,因极端天气原因,长寿湖水位上涨到+332.200 m,危及围堰安全。为解决钢管桩围堰的安全问题,提出采用水下施工内支撑的加固方案。待围堰内部水头与外部保持一致后,将已经插打的锁口钢管桩加高至标高+334.000 m,拆除已安装好的4道内支撑,重新安装6道内支撑。采用MIDAS Civil软件分别建立加固前、后钢管桩围堰结构有限元模型,分析钢管桩及内支撑的受力安全与稳定性。结果表明:施工控制水位+330.500 m下,围堰结构最大正应力由加固前的162.6 MPa下降到加固后的82.3 MPa,下降了49.3%;承载水位可从施工控制水位+330.500 m增加到目标控制水位+333.500 m,且强度和刚度等均留有一定储备。水下施工内支撑的加固方案可提升围堰的承载能力。该桥围堰加固后整体受力效果良好,已顺利完成承台浇筑施工。  相似文献   

14.
《中外公路》2021,41(3):130-134
济南凤凰路黄河大桥跨黄河主桥为三塔(钢塔)自锚式悬索桥,跨径组合为(70+168+2×428+168+70) m,中塔位于黄河中心位置,承台埋入河床较深,采用拉森IVw钢板桩围堰施工承台,围堰最大平面尺寸为37.1 m×27.1 m,桩长21 m,共设置3道横向围囹。采用Midas有限元分析软件,根据施工工序同时考虑内外水压力、土压力及水流作用,选取了4个荷载工况计算钢板桩及围囹变形及应力情况。计算结果表明符合规范要求。设置具有一定刚度的、坚固的定位导向架系统实施钢板桩的插打,基坑按"先安装支撑后开挖,分层支撑分层开挖"的原则开挖,开挖过程中利用传感器对围堰进行实时监测,实现深埋式承台钢板桩安全快速施工。  相似文献   

15.
本文以桥梁深水基础钢板桩围堰施工为背景,探讨适应于工程实际情况的钢板桩围堰结构形式,基于Midas展开有限元分析,从钢板桩与内支撑结构设置情况出发,创建与之对应的有限元分析模型。考虑不利工况,在此基础上检验钢板桩围堰强度,分析其稳定性。实际结果得知,设置的钢板桩围堰符合设计标准,说明此方案具有可行性,将其应用于工程中可为施工质量提供保障,具有一定的参考价值。  相似文献   

16.
为了研究洛溪大桥拓宽工程Z3#主墩承台所用八边形双壁钢围堰挡水结构的力学性能,采用有限元软件ANSYS对该钢围堰关键施工阶段的受力特征进行仿真分析,以保证钢围堰在施工阶段的安全性。研究结果表明:1)钢围堰内封底混凝土达到设计强度,且围堰内的水抽干时所对应的工况为最不利工况,此时结构的最大变形为7.18 mm,出现在围堰横桥向壁板的中部;2)结构的最大应力为180.25 MPa,出现在水平横撑棱角附近,其中水平横撑处于第2节围堰下端至第1道内支撑的中间位置;3)在施工阶段中,八边形双壁钢围堰的变形和最大应力均小于设计值,结构刚度和强度满足要求。  相似文献   

17.
港珠澳大桥浅水区非通航孔桥为跨度85m的连续组合梁结构,其基础采用钢管复合桩基和预制墩台结构,基础采用无内支撑结构的双壁锁口钢套箱围堰施工。围堰长17.6 m、宽13.4m、高23.2m,壁仓厚0.75m。围堰设计成可拆装式结构,平面分为8块,各分块之间采用榫头式锁口与螺栓组合的方式连接。围堰主要由侧板、水平环板与竖隔板、围堰接缝三部分组成。根据施工过程中围堰受力的不同,分4个工况,采用有限元软件MIDAS Civil 2006及ANSYS建立各工况的有限元模型,分析围堰及封底混凝土结构的位移及应力。结果表明,在各个工况下,围堰及封底混凝土结构的最大位移及应力均小于规范允许值,满足规范要求。表明围堰在施工过程中受力安全、结构合理。  相似文献   

18.
双排对拉钢板(管)桩围堰是堰筑隧道常用的围堰形式,围堰结构选型设计(刚度选型、是否采取地基处理或反压土护脚等)往往差异较大。文章通过对围堰结构选型进行综合对比论证,同时采用通用有限元软件SAP2000对各种处理手段的影响进行计算分析,计算填土工况和抽水工况两种工况条件下的钢板桩弯矩、内力、位移以及拉杆轴力等,对数据进行分析。结果表明,提高自身刚度可以减小变形及应力,但并不是线性关系,地基处理和反压土效果基本相当,可有效降低拉杆轴力、板桩弯矩、应力及变形等各参数。因此,围堰结构选型首先应根据地质条件、水文条件选定合适刚度的钢板(管)桩型号,再根据实际工程情况,选择地基处理或反压土等处理方式。  相似文献   

19.
杭州钱江铁路新桥位于钱塘江强涌潮地区,部分墩水下承台基础采用拉森Ⅵ型钢板桩围堰施工.以该桥56号墩为例,介绍拉森Ⅵ型钢板桩围堰施工及计算.钢板桩围堰施工期间,其外侧土压力按静止土压力,内侧土压力按被动土压力计算.2种最不利工况,第1种为钢板桩围堰吸泥完成到封底前,主要确定钢板桩入土深度及验算钢板桩、围檩及内支撑强度和刚度;第2种为钢板桩围堰抽水完成后,仅验算钢板桩围堰、围檩及内支撑强度和刚度.强涌潮时分2种工况计算:第1种为在钢板桩围堰整体计算模型上增加迎潮面涌潮压力;第2种为在钢板桩围堰整体计算模型上增加迎潮面和两侧面涌潮压力.  相似文献   

20.
板桩支撑系统在江浙沿海地区的双层软土地质条件下的深基坑工程中具有较广阔的运用前景。以嘉绍北岸接线高速公路的长山河大桥围堰为工程背景,利用有限元法模拟了板桩施工过程及支撑受力,保证了结构的安全,优化了钢材用量,为此类地质条件下的钢板桩围堰施工积累了经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号