首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘方华 《公路》2022,67(3):143-147
在传统大体积混凝土施工中采用冷却水管进行混凝土内部降温,达到內降外保的效果。采用混凝土水化热温升抑制剂,取消冷却水管,既可达到大体积混凝土温控要求,又可以减少冷却水管的投入。  相似文献   

2.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

3.
为研究冷却水对大体积混凝土温度场的影响和发展变化,文章以金安金沙江大桥大体积混凝承台浇筑工程为例,对其施工和养护期间水化热温度进行连续监测。根据实测水化热温度进行冷却水流速和流量控制,提出采用变速控制水冷管流速的方法。利用瞬态温度场三维有限元理论方法,应用有限元计算软件建立模型,进行水冷管参数对比分析。分析结果表明:冷却水对混凝土降温有显著效果,在水泥用量不变的情况下,合理调整水冷管流速等因素能有效控制水化热温升变化,防止有害裂缝的产生。  相似文献   

4.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

5.
为实现对某工程中承台大体积混凝土水化热的最佳降温效果,使用实测数据训练了基于BP神经网络的温度预测模型,并结合改进后的遗传算法建立了混凝土水化热管冷参数的数学优化模型。通过模型间的嵌套达到了对冷却水进水温度、冷却水流量和冷水管管径的最优求解。计算结果显示:3项管冷参数的优化均对混凝土水化热温度的降低有一定的效果,其中在一定范围内增大冷却水流量对核心区的降温效果最明显,当冷却水流量由2.0 m3/h增加至2.5 m3/h时,混凝土核心区温度峰值降低4.6℃,累计水化热降低36.4%,降温效果最显著。  相似文献   

6.
桥梁大体积混凝土承台施工中的温度控制   总被引:1,自引:1,他引:1  
梁振西  王解军 《中外公路》2006,26(3):226-229
现场测试了刚构桥两个不同厚度的承台施工过程中水化热引起的温度变化,并计算了冷却水对降低混凝土水化热引起的最高温度的贡献。理论计算与实测结果对比表明,对于厚度较大的承台,冷却水对降低混凝土最高温度的作用更加明显。  相似文献   

7.
现场测试了预应力混凝土连续刚构桥2个不同厚度的承台施工过程的温度变化,按理论方法分析了冷却水对降低混凝土水化热引起的最高温度的贡献,并且将理论分析结果与实测结果进行了比较.结果表明,对于厚度较大的承台,冷却水对降低混凝土最高温度的作用更加明显.  相似文献   

8.
连续刚构桥承台施工中的温度分析   总被引:8,自引:2,他引:6  
现场测试了预应力混凝土连续刚构桥2个不同厚度的承台施工过程的温度变化,按理论方法分析了冷却水对降低混凝土水化热引起的最高温度的贡献,并且将理论分析结果与实测结果进行了比较。结果表明,对于厚度较大的承台,冷却水对降低混凝土最高温度的作用更加明显。  相似文献   

9.
利用有限元软件Midas/Fea对大体积水下混凝土承台进行温控分析,模拟边界条件、水文状况及施工过程等因素进行全程水化热温度场的仿真分析,为承台浇筑施工方法及降温措施提供借鉴参考。  相似文献   

10.
常山南门溪大桥为钢管混凝土提篮拱桥,拱肋施工正处于冬季,针对该桥拱肋采用集束式钢管混凝土结构,截面混凝土所占比例较大,钢管又相对薄弱的情况,采用LUSAS通用有限元软件,分析拱肋混凝土水化热,对拱肋水化热产生的温度场及温度应力进行计算。分析表明:冬季施工拱肋混凝土水化热引起的温度梯度大,温度应力明显,在施工与监控过程中应考虑其影响。  相似文献   

11.
谢伟英  黄顺祥  丘庆发 《公路》2007,(1):218-220
对东沙大桥主塔承台大体积混凝土配合比及施工工艺进行了研究,为防止大体积混凝土因水化热产生开裂提供技术平台。研究结果表明:采用低水泥用量、大掺量矿物掺合料和高效缓凝减水剂的“三掺”混凝土配制技术,运用密实骨架堆积理论对混凝土配合比进行优化设计,同时通过预埋冷却水管降温措施及严格的施工管理,不仅有效地防止混凝土由温度应力而出现的裂缝,而且大幅地降低了工程造价。  相似文献   

12.
桂江大桥在施工过程中出现墩身节段贯通裂缝,分析发现引起墩身开裂的原因主要是混凝土在凝固过程中产生了大量的水化热,使混凝土温度升高.由于该桥墩位于江中,晚上温度较低,未作降温或保温措施,导致混凝土内外温差较大从而引起开裂.在以后的施工过程中采取了给混凝土保温的措施,使得这一现象消失.  相似文献   

13.
虎门二桥大沙水道桥东锚碇锚体都是大体积混凝土,针对大体积混凝土施工进行了混凝土配合比设计和试验研究,结果表明核电水泥(低热硅酸盐水泥)掺合粉煤灰、矿渣粉以及超缓凝性高性能减水剂的应用,可以有效地降低水化热速率和延缓放热峰值,再通过降低混凝土入模温度及冷却水管等降温措施,大大降低了温峰和内外温差,有效地控制锚体混凝土的开裂。  相似文献   

14.
针对大跨连续梁桥箱梁0~#块施工过程中的水化热问题,基于有限元模型对冷却管通水循环的降温效果和防裂效果进行了比较分析。基于热交换平衡原理,考虑环境因素和材料特性的影响,采用Midas/FEA软件,在箱梁0~#块无冷却管通水循环模型与实测温度场数据相吻合的条件下,比较了箱梁0~#块无冷却管和冷却管通水循环计算模型的混凝土降温效果、温度应力和最小裂缝系数;通过对计算结果的分析,进一步明确了冷却管通水循环对0~#块混凝土水化热裂缝防控的有效性。结果表明:冷却管通水循环可显著地降低箱梁0~#块混凝土的温度峰值、应力峰值和表面开裂几率,为大跨连续梁桥箱梁0~#块高强混凝土施工质量控制提供了有效措施。  相似文献   

15.
文章结合实际工程,探究大体积混凝土由于水泥水化热导致混凝土在施工及养护过程中出现的升温和降温过程,利用ANSYS有限元分析模拟不同工况,得到各工况不同龄期条件下混凝土的理论最高温度、最大温度应力,求得大体积混凝土安全系数。通过模拟确定适合当地气候条件的混凝土浇筑温度,为以后车站结构大体积混凝土浇筑工作提供依据。  相似文献   

16.
大体积混凝土承台整体浇筑能提高承台的整体性,但水泥的水化热反应较分层浇筑时剧烈,产生温度裂缝的概率高。文中采用有限元结构计算程序,用水化热分析模块模拟计算承台整体浇筑的过程,提出了控制混凝土内部最高温度、降低混凝土降温速率、优化边界约束等温控措施。  相似文献   

17.
针对贵州省余安(余庆—安龙)高速公路平塘—罗甸段大小井特大跨拱桥拱座施工中大体积砼水化热问题,采用有限元软件MIDAS/Civil建立施工阶段仿真模型模拟施工过程,对大体积砼水化热进行计算分析,得出施工和养护过程中温度场、力场分布和水化热规律,据此制定合适的大体积砼表面养护和内部降温措施,并在实施过程中进行温度采集,实时调整和改进温控措施,将温度控制在规范要求范围内。  相似文献   

18.
文章提出了一种三维实体有限元分析的隧道锚碇水化热分析方法,能够考虑隧道锚复杂的几何形状、隧道锚的分层浇筑、混凝土内部的冷却水布置以及混凝土周围的热传递环境,从而获得隧道锚内部任意位置的温度发展历程以及温度应力发展历程,为指导隧道锚大体积混凝土施工提供了准确的理论计算结果,并将该方法用于主跨为1386m的金安金沙江大桥的隧道锚水化热分析计算中,准确获得了该锚碇三维温度场和应力场,指导了该隧道锚大体积混凝土施工。  相似文献   

19.
《公路》2015,(9)
随着桥梁施工建造技术的不断发展,建造特大型桥梁所涉及的大体积混凝土承台施工也越来越多,如不采取措施控制水化热,混凝土内部温度将急剧升高,势必会产生温度裂缝,严重影响工程质量,因此,需要通过采取分层浇筑、优化配合比设计、模拟承台混凝土水化热计算、控制混凝土入模温度和冷却水循环等针对性措施对混凝土内部温度进行有效控制,使混凝土内部温度的变化在允许范围内就显得尤为重要。针对某特大桥(斜拉桥)主塔大体积混凝土承台施工的实际情况,从混凝土施工温度控制方面进行了分析和介绍,以为同类型大体积承台混凝土施工提供可资借鉴的参考。  相似文献   

20.
为研究塑料波纹管道作为冷却管的降温效应,以望东长江大桥索塔下横梁为研究对象,对传统金属冷却管降温措施进行了改进,提出采用空气压缩机向波纹管道内压"水雾"的降温措施。并通过试验测试了波纹管道内的"水雾"降温效应及热导性。在此基础上,采用桥梁商业程序MIDAS.FE建立下横梁实体有限元模型,并对其进行水化热仿真分析,结果表明:冷管对混凝土水化热降温效应明显,有无冷管混凝土最高温度相差12℃。该降温措施构思新颖、就地取材,为大体积预应力混凝土温控提供了一种全新的解决办法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号