首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
为考察硅藻精土对沥青混合料高温稳定性的改性效果,分别利用车辙动稳定度试验及三轴动态蠕变试验对硅藻精土改性沥青混合料的高温稳定性能进行评价。通过车辙试验表明:硅藻精土能够将AC-20沥青混合料的动稳定度提升约50%;能够在SBS改性的基础上,将AC-13沥青混合料的动稳定度进一步提升30%以上。通过三轴动态蠕变试验表明:掺加硅藻精土延迟了沥青混合料失稳状态的出现,同时具备更强的抵御累积变形的能力。因此,掺加硅藻精土能够显著提升沥青混合料的高温稳定性能,能够适用于以车辙为主要病害类型的道路。  相似文献   

2.
以AC-16沥青混合料为试验对象,采用改进型硅藻土改性沥青作为胶结料,通过路用性能试验,验证不同改进型硅藻土掺量下沥青混合料的水稳定性能和高温稳定性。试验结果表明:改进型硅藻土可提高AC-16沥青混合料的标准马歇尔稳定度、浸水残留稳定度和冻融劈裂强度比;掺入硅藻土后的冻融劈裂强度有所降低,且随着掺量增加降低越来越明显;改进型硅藻土能显著提高AC-16沥青混合料的高温稳定性,当掺量为13%(占沥青质量)时其动稳定度提高近85%。  相似文献   

3.
采用沥青搅拌站回收的碱性废粉掺入沥青混合料,代替部分矿粉,研究碱性废粉部分代替矿粉的可行性以及可掺入的最大量。按废粉占矿粉的比例为0%、30%、50%和70%,分别制备不同废粉掺量的沥青混合料,进行车辙试验、浸水稳定度试验、飞散试验、冻融劈裂试验,以检验废粉掺量变化对沥青混合料车辙以及水稳定的影响。试验结果表明:随着碱性废粉掺入量的增加,沥青混合料的动稳定度、浸水残留稳定度减小,飞散损失增加,冻融劈裂抗拉强度比减小。当废粉掺量为50%时,沥青混合料的动稳定度略超过《公路沥青路面施工技术规范》(JTG F40-2004)要求,浸水残留稳定度、冻融劈裂残留稳定度均不满足规范要求。当废粉掺量为30%时,沥青混合料的动稳定度、浸水残留稳定度、冻融残留强度比满足规范要求,得到所研究碱性废粉在沥青混合料中的最大掺入量为30%。  相似文献   

4.
通过室内试验,分析了钢纤维掺量对混合料动稳定度、劈裂强度、劲度模量、残留稳定度和冻融劈裂强度比等路用性能指标的影响。结果表明:在沥青混合料中添加钢纤维可以提高混合料的高温稳定性、低温抗裂性和水稳定性,尤其低温抗裂性最为突出;但钢纤维掺量并不是越大越好,当钢纤维掺量为2.0%时沥青混合料的路用性能最优。  相似文献   

5.
为研究聚酯纤维掺量对沥青混合料路用性能和冻融损伤劣化规律的影响,通过高温车辙试验、低温劈裂试验、水稳定性试验和冻融循环条件下小梁弯曲试验,对比分析聚酯纤维掺量为0.0、0.1%、0.2%、0.3%和0.4%时沥青混合料动稳定度、极限弯拉强度、弯拉应变、残留稳定度、冻融劈裂强度比和冻融弯曲应变的变化。结果表明,随着聚酯纤维掺量的增加,沥青混合料路用性能指标和冻融损伤性能呈现先增大后减小的趋势,聚酯纤维掺量为0.2%左右时,沥青混合料动稳定度出现峰值(3 512次/mm),抗弯拉强度提高12.4%,极限弯曲应变增加7.6%,弯曲劲度模量超过2 670 MPa,马歇尔残留稳定度和冻融劈裂强度比分别提高2.2%、3.2%;聚酯纤维掺量为0.2%左右、冻融循环次数为12次时,弯曲破坏应变出现峰值,抗冻融性能最佳;聚酯纤维沥青混合料的弯曲破坏应变与冻融循环周期呈负相关关系,冻融循环次数超过12次时,弯曲应变下降速率减小并逐渐趋于稳定。  相似文献   

6.
为研究掺加钢渣ARHM-13沥青混合料的性能,采用体积法将粒径为9.5 mm~16 mm档钢渣等质量替代10 mm~15 mm档玄武岩集料,钢渣掺量设计为0%、30%、50%、70%及100%,依据马歇尔试验确定各组油石比,并通过高温车辙试验、低温弯曲试验、浸水马歇尔试验、冻融劈裂试验以及加速磨耗试验对不同钢渣掺量的ARHM-13沥青混合料的路用性能进行研究。结果表明:1)不同钢渣掺量的ARHM-13沥青混合料高温稳定性、低温抗裂性、水稳定性以及抗滑性能均具有不同幅度的提升,其中动稳定度最高提升了19.79%,最大弯拉应变最高增加了6.30%;2)当钢渣掺量为30%时,相较于不掺加钢渣的沥青混合料,ARHM-13沥青混合料的冻融劈裂强度比提高了0.03%;当钢渣掺量分别为50%、70%和100%时,ARHM-13沥青混合料的冻融劈裂强度比分别降低了3.96%、6.25%和7.19%;3) 10万次荷载作用后摆值损失率最低为20.2%;4) ARHM-13沥青混合料的抗滑性能随钢渣掺量的增加呈先升后降趋势,且随着钢渣掺量的增加,衰减过程中回升现象出现的时间越延长,回升幅度越小;5)综合考...  相似文献   

7.
为了研究复合改性剂的掺入对改性沥青混合料使用性能的影响,以70~#石油沥青作为基质沥青、蓖麻油植物沥青和岩沥青为改性剂,制备了复合改性剂掺量为0~60%的生物沥青-岩沥青复合改性沥青混合料,设计了级配为AC-20C的沥青混合料,采用车辙试验、Marshall稳定度试验、浸水马歇尔试验、冻融劈裂试验、小梁低温弯曲试验的方法,分析了不同掺量复合改性沥青混合料的Marshall试验稳定度、车辙试验动稳定度、浸水马歇尔试验残留稳定度和冻融劈裂试验残留强度比以及弯曲试验破坏应变。结果表明,复合改性剂掺量不超过最不利掺量时,其掺入将会降低沥青混合料的高温稳定性,随着复合改性剂掺量的继续增加,沥青混合料的高温稳定性逐渐得到提高;掺入复合改性剂后,沥青混合料的水稳定性迅速下降,采用1%消石灰代替部分矿粉后,水稳定性得到明显增强,复合改性剂掺量超过25%时,符合沥青混合料施工技术规范中关于水稳定性的规定;复合改性剂的掺量在最佳掺量范围内,沥青混合料的低温抗裂性得到改善,反之,复合改性剂的掺入对沥青混合料的低温抗裂性产生不利影响,掺量不超过40%时满足冬温区的相应技术要求;路用沥青混合料推荐的复合改性剂掺量范围为25%~40%。  相似文献   

8.
仝佳 《中外公路》2019,39(1):267-270
采用Marshall试验和车辙试验,以残留稳定度、劈裂强度比和动稳定度为评价指标,对比研究了聚合磷酸在不同添加剂量条件下,对克拉玛依70~#沥青、70~#A级道路石油沥青和弘润70~#沥青及混合料的各方面性能作用效果。研究结果表明:聚合磷酸能够提高沥青混合料的水稳定性能、抗老化性能和高温性能。克拉玛依70~#沥青混合料,在添加剂量为1.25%时,试件的残留稳定度、劈裂强度比和动稳定度均达到最优;70~#A级道路石油沥青混合料,在添加剂量为1.00%时,试件的残留稳定度和劈裂强度比达到最优,在添加剂量为1.25%时,试件的动稳定度达到最优;弘润70~#沥青混合料,在添加剂量为1.00%时,试件的残留稳定度和动稳定度达到最优,在添加剂量为1.25%时,试件的劈裂强度比达到最优。在多雨地区,建议沥青路面采用克拉玛依70~#沥青,且聚合磷酸的添加剂量为1.25%;在夏季高温地区或者交通量较大的路段,建议沥青路面采用弘润70~#沥青,且聚合磷酸的添加剂量为1.00%。  相似文献   

9.
采用纳米级膨润土作为改性剂,通过室内试验研究了纳米级膨润土改性沥青混合料的高温抗变形性能,低温抗裂性能和水稳定性能。试验结果表明:纳米级膨润土改性沥青具有比基质沥青更好的抗车辙变形能力,显著提高了其高温稳定性,改性剂在最佳掺量情况下,动稳定度可以提高72%;与基质沥青相比,纳米级膨润土改性沥青的低温抗裂性能略有下降,但并不明显,仍满足规范要求;水稳定性试验表明:纳米级膨润土改性沥青明显提高了混合料的抗水损能力,在最佳掺量下可以提高10%左右;同时得到纳米级膨润土改性剂的最佳掺量在4%~5%之间。  相似文献   

10.
为了改善砾石沥青混合料的路用性能,以推广砾石在道路工程中的应用,选用价格低廉、增韧效果强、取材方便的玻璃纤维来改善砾石沥青混合料的黏附性,并通过冻融劈裂试验、浸水马歇尔试验、车辙试验、弯曲疲劳试验来评价玻璃纤维对砾石沥青混合料路用性能的改善作用。冻融劈裂试验和浸水马歇尔试验结果表明:掺加玻璃纤维后的砾石沥青混合料的水稳定性能有明显改善,残留稳定度MS0、冻融劈裂强度比TSR都随玻璃纤维掺量的增加呈现先增大后减小的趋势,当玻璃纤维掺量为0.35%时,砾石沥青混合料水稳定性达到最佳,其中,MS0达到91.0%,TSR达到89.6%,分别比不掺加纤维的砾石沥青混合料提高了15.5%,24.3%。由0.35%纤维掺量下砾石沥青混合料的车辙试验及疲劳试验结果可知:掺加玻璃纤维后的砾石沥青混合料的高温性能和疲劳性能也有明显改善,其中,动稳定度提高46.9%;应力水平为0.5时,疲劳寿命提高了67.9%;应力水平为0.7时,疲劳寿命提高了80.9%。可见,纤维掺量为0.35%时,玻璃纤维对于AC-25砾石沥青混合料的路用性能改善作用最佳,一定条件下可将玻璃纤维砾石沥青混合料应用于高速公路沥青路面下面层之中。  相似文献   

11.
为了评价温拌沥青混合料的水稳定性和疲劳性能,以热拌沥青混合料的配合比设计方法,掺加Sasobit降粘剂制备了AC-13温拌沥青混合料,进行了浸水马歇尔试验、冻融劈裂试验、小梁疲劳试验和低温弯曲试验,测定了温拌沥青混合料的残留稳定度、残留强度比、疲劳次数和低温性能。结果表明:掺加3%Sasobit时,温拌沥青混合料的残留稳定度和残留强度比达到最大值,分别为91.2%、87.5%,疲劳次数与基质沥青相比,增加了16.4%,说明掺加Sasobit后,提高了温拌沥青混合料的路用性能,由低温弯曲试验确定Sasobit的掺量不宜大于3%。  相似文献   

12.
将硅藻精土掺配在沥青混合料中,可以改善沥青混合料的物理力学性能,提高路面工程的质量.本研究采用室内试验的方法,得出沥青混合料的低温弯曲蠕变速率,对掺加硅藻精土的沥青混合料进行低温性能研究.通过室内试验,证实硅藻精土能够很好地改善沥青混合料的低温性能,并且随着硅藻精土掺量的增加,沥青混合料低温性能的改善程度呈现出一定的规律性.  相似文献   

13.
探究阻燃剂种类、掺量对SBS改性沥青性能的影响,并着重研究自制复合阻燃剂对以花岗岩为集料的AC-13C和SMA-13沥青混合料路用性能的影响。试验结果表明:复合阻燃剂具有阻燃、抑烟的双重作用,掺量为10%时,阻燃沥青的氧指数达到25.8%,阻燃效果较为明显;复合阻燃剂可以小幅提高以花岗岩为集料的AC-13C和SMA-13的车辙动稳定度,但降低了它们的残留稳定度比和冻融劈裂强度比,其中冻融劈裂强度比分别降低到70.1%和70.7%,降幅分别达到17.1%和16.7%。在冻害严重、地下水位偏高的隧道地段不宜采用此两种以花岗岩为集料的阻燃沥青混合料。  相似文献   

14.
在沥青混合料中掺加中空聚酯纤维,改善了沥青混合料的性能。室内试验表明:加入中空聚酯纤维后,沥青混合料的最佳油石比增大,稳定度、流值增大,劈裂强度增大,冻融循环后劈裂强度比及车辙试验动稳定度明显增加。中空聚酯纤维改善了沥青与集料的粘附性,使沥青混合料的路用性能得到明显改善,而其性能价格比明显优于普通沥青混合料。特别适用于季节性冰冻地区。  相似文献   

15.
周立波 《中外公路》2019,39(3):256-259
为了探究膨润土对热拌沥青混合料(HMA)疲劳性能的影响,选用6种沥青重量百分比(0%、10%、15%、20%、25%和30%)为膨润土掺量,制备了膨润土改性沥青混合料,进而对不同膨润土掺量的沥青混合料开展了马歇尔稳定度、间接拉伸强度、回弹模量和四点弯曲疲劳试验。试验结果表明:膨润土的掺入使沥青混合料的疲劳寿命得到明显的提高,并根据试验结果拟合得到了膨润土改性沥青混合料的疲劳方程;此外,膨润土作为改性剂提升了沥青混合料的间接拉伸强度和回弹模量,改善了沥青混合料的抗变形能力;建议膨润土掺量控制为10%~15%。  相似文献   

16.
结合高速公路养护工程实践,采用大量室内试验对印尼布敦岩沥青的胶浆性能和混合料路用性能进行了研究。试验表明,随着岩沥青掺量的增加,混和沥青的热稳定性和耐老化都有明显增加,混合料的动稳定度、稳定度、劈裂强度等指标都得到了提高。  相似文献   

17.
采用废旧塑料和增粘剂合成沥青混合料改性添加剂MPE,改性剂采用后添加工艺,即在沥青混合料拌和时直接投入,不需要经过加工厂对沥青的改性。在不同MPE改性添加剂掺量下,进行马歇尔稳定度及劈裂强度试验,得出残留稳定度及冻融劈裂残留强度比随MPE掺量变化的曲线图;进行车辙试验,得出不同MPE掺量下的动稳定度曲线,改变拌和工艺,并与SBS改性沥青混合料和现场取样MPE沥青混合料进行试验对比,最终得出适宜的MPE掺量可有效改善沥青混凝土的高温稳定性和水稳定性。并运用高倍显微镜从微观结构上对其改性原理进行了解释。该工艺既简单易行,又经济环保。  相似文献   

18.
通过试验探究SBR-SBS复合改性乳化沥青冷再生混合料的水稳定性、高温稳定性、低温抗裂性等路用性能。试验结果表明,SBS、SBR复合改性剂的掺入能有效提高冷再生混合料各项路用性能。当SBS掺量为3%、SBR掺量为3.5%时,混合料28 d的残留稳定度达85.3%,劈裂强度比也均达到93.6%,动稳定度超过10 000次/mm,弯拉应变达到3 500με。  相似文献   

19.
沥青混合料中常掺入部分活性矿粉提高沥青与集料的粘结力,为了节约矿石材料,用水泥替代沥青混合料中部分矿粉,通过室内试验研究不同水泥替代量下沥青混合料的性能。试验结果表明,水泥替代20%~40%矿粉时,沥青胶浆的软化点和延度较高;水泥掺量为2%时沥青混合料的马歇尔稳定度达到最大值17.1kN;水泥掺量为4%时劈裂强度最大为0.64MPa,当水泥替代量大于2%时,其动稳定度增长缓慢,因此,为了保证沥青混合料的性能,同时节约矿物材料,建议水泥含量为2%~4%。  相似文献   

20.
为优化泡沫沥青就地冷再生混合料级配,研究了水泥、机制砂和19~26.5 mm粗集料对泡沫沥青冷再生混合料路用性能的影响。结果表明:与不掺水泥相比,掺1.5%的水泥,冷再生混合料的冻融强度比、动稳定度、弯拉强度分别提高19.0%,160.0%,18.0%。机制砂掺量为20.0%时,与不掺机制砂相比,冻融劈裂强度比、动稳定度、抗弯拉强度可分别提高10.0%,62.0%,13.0%;9.5~19 mm粗集料掺量为10.0%~20.0%时,与不掺粗集料相比,动稳定度可至少提高96.0%。建议冷再生混合料中19~26.5 mm粗集料掺量为10.0%~20.0%,机制砂掺量为20.0%,水泥掺量为1.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号