首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本文以海南铺前独塔斜拉桥为工程背景,建立了该桥的三维有限元动力计算模型,首先介绍了有限元模型的建立和地震动的选取,其次讨论了弹塑性钢阻尼器不同的设计参数(屈前刚度、屈服荷载)对独塔斜拉桥横桥向地震响应的影响,最后对比分析了横桥向墩梁间固结、滑动和弹塑性约束3种不同体系下的桥梁抗震响应,结果表明设置弹塑性钢阻尼器的弹塑性约束体系不仅能够减小全桥结构的地震内力响应,还能控制位移响应在合理范围内。  相似文献   

2.
为了研究千米级斜拉桥纵向采用黏滞性阻尼器的减震效果,以一座主跨1 088 m的斜拉桥为工程背景,按相似理论设计制作了一座几何缩尺比为1:35的全桥振动台试验模型,通过改变塔梁间的连接方式,建立了塔梁间纵向无约束的非减震体系和塔梁间纵向采用黏滞性阻尼器的减震体系,选用4条具有代表性的地震动进行了4个振动台纵向一致激励的全桥振动台试验,然后将不同地震动输入下2种体系的试验结果进行对比分析。试验结果表明:千米级斜拉桥纵向无约束体系的地震响应受输入地震动的特性影响较大,对于长周期成分丰富,特别是对应于结构一阶周期的加速度谱和位移谱谱值较大的地震动,结构的地震响应较大;千米级斜拉桥非减震体系的地震响应同样也受输入地震动特性的影响较大;纵向采用黏滞性阻尼器的减震体系可以减小结构的梁端位移、塔顶位移以及塔底钢筋应变,但输入地震动的特性会影响黏滞性阻尼器的减震效果,对于特征周期较长、长周期成分丰富的地震动,黏滞性阻尼器的减震效果较好,而对于有明显速度脉冲的地震动,黏滞性阻尼器的减震效果相对较差,当地震动峰值加速度PGA为0.4g时,在场地人工地震动、Loma Prieta地震动作用下,梁端最大位移分别减小了62.41%、37.75%;对于有明显速度脉冲的地震动,需要选择阻尼系数更大的黏滞性阻尼器。  相似文献   

3.
芜湖长江公路二桥主桥为主跨806m的双塔四索面斜拉桥。为改善桥梁横桥向与顺桥向抗震性能,该桥采用斜置阻尼约束体系。采用MIDAS Civil软件建立全桥有限元模型,采用非线性规划法优化粘滞阻尼器的力学性能参数;根据该桥在温度作用、汽车荷载、汽车制动力、风荷载、地震作用等荷载及荷载组合作用下的结构响应,确定粘滞阻尼器的极限变位状态,并根据该极限变位状态计算粘滞阻尼器的极限位移参数。该桥斜置阻尼约束体系的设计参数分别为:阻尼器速度指数α=0.25、阻尼系数C=3 000kN/(m/s)0.25、最大阻尼力Fmax=2 200kN,行程±550mm、水平转角±15°、竖向转角±5°。  相似文献   

4.
白沙长江大桥是一座塔墩梁固结的主桥长为920 m的双塔独柱式混合梁斜拉桥.为了研究其辅助墩和过渡墩处横桥向的合理约束体系,分别在横向自由、横向约束、过渡墩约束及辅助墩约束4种约束体系下进行时程分析,研究斜拉桥在不同横向约束体系下的地震响应特点,针对混凝土刚性挡块和粘滞阻尼器减震体系分析不同参数对抗震性能的影响.结果表明:采用混凝土刚性挡块对同时减小各墩的横向地震响应作用较小;采用粘滞阻尼器体系可以有效减小各墩的横向地震响应,以及墩梁相对位移.  相似文献   

5.
为研究长周期地震动作用下非线性粘滞阻尼器对大跨径斜拉桥减震效果的影响,以某主跨为926m的双塔斜拉桥为背景进行分析。采用ANSYS建立全桥三维有限元模型,粘滞阻尼器的计算模型采用Maxwell模型,以TCU026(NS)波进行地震动输入,分析在不同的粘滞阻尼器速度指数α与阻尼系数C的组合下,斜拉桥的位移、内力响应及阻尼器的阻尼力情况,并采用二元参数拟合的方法对响应结果进行处理。结果表明:设置非线性粘滞阻尼器能够有效地减小长周期地震动作用下大跨径斜拉桥关键节点的位移;不同的粘滞阻尼器参数组合对斜拉桥结构内力响应影响较大,合理的参数组合能将桥塔塔底剪力的增长幅度控制在可接受的范围内,同时保证塔底弯矩无明显增大现象;在长周期地震动作用下,背景桥梁粘滞阻尼器理想的参数组合为α=0.4、C=2 000kN·(m/s)-0.4。  相似文献   

6.
秭归长江公路大桥为主跨519 m的中承式桁架拱桥。针对该桥设计基准风速高、三峡库区多震的建设条件,以及大跨单拱拱桥拱上立柱高度差别大、桥面梁从肋间穿过的结构特点,以全桥纵、横向静、动力性能及稳定性综合最优为目标开展拱梁约束体系设计。采用MIDAS Civil建立全桥有限元模型,分析墩梁固结布置、肋间弹性约束刚度对结构静力响应、整体稳定性的影响规律,确定采用纵向P1~P3立柱墩梁固结、2号肋间弹性约束刚度取值4 000 kN/m、横桥向一侧活动一侧固定的约束体系最优。在该约束体系的基础上,对比分析采用拉索减震支座前、后的地震响应,通过参数分析确定拉索自由行程、拉索刚度取值分别为5 cm、5×10~4 kN/m时最优,此时E2作用下拱梁间横向最大位移较采用普通盆式支座时下降47%。  相似文献   

7.
以厦门马新特大桥主桥为工程背景,建立塔、梁、墩固结体系独塔混合梁斜拉桥的三维空间有限元模型,对其结构动力特性和地震响应进行了计算分析。采用反应谱法和随机振动的功率谱法分别计算了E1地震作用下,结构的位移响应和内力响应,考虑了顺桥向+竖向和横桥向+竖向两种工况。分析表明,两种分析方法的计算结果基本一致,功率谱的计算结果较反应谱的略大。  相似文献   

8.
为了研究材料非线性和竖向地震动对长挑臂宽主梁斜拉桥地震响应的影响,分别按照弹性梁单元和弹塑性纤维单元建立了全桥有限元模型,采用非线性时程反应方法,对比分析了该桥的动力特性和地震响应。研究表明:弹性模型的各阶周期明显大于纤维模型,且两者对应的振型出现在不同的阶数;不管峰值加速度(PGA)大小如何,弹性模型都会大大高估主塔的地震内力响应,低估其位移响应,且PGA越大,误差也越大;竖向地震动对主塔纵桥向的地震响应影响较大,对横桥向影响很小;随着PGA的增大,竖向地震动的影响也越大,不仅会大幅增大主塔的内力响应,而且会改变主塔的位移分布规律。因此,长挑臂宽主梁斜拉桥的抗震分析必须同时考虑材料非线性和竖向地震动的影响,尤其当PGA较大时。  相似文献   

9.
大跨高墩小半径刚构—连续组合梁桥地震响应分析   总被引:1,自引:0,他引:1  
为研究大跨高墩小半径刚构-连续组合曲线梁桥的地震响应,以某(40+6×80+40)m的刚构-连续组合梁铁路特大桥为背景进行分析.采用ANSYS建立全桥有限元模型,计算桥梁动力特性,并采用反应谱法和时程分析法对桥梁在地震作用下的内力和位移进行分析.分析结果表明:增大桥墩刚度、采用墩梁固结方式能够提高刚构-连续组合曲线梁桥的整体性,有利于桥梁的抗震;从地震响应(位移、弯矩)综合考虑,对该类桥梁最不利的地震波激励角度为0°、90°(分别对应顺桥向、横桥向),增大横向刚度可减小桥梁结构的横向位移,增大墩底截面面积可减小桥梁结构在水平地震作用下的地震响应;总体上来说,在横桥向地震波激励下该类桥梁横向位移和面外弯矩最大,在顺桥向地震波激励下该类桥梁纵向位移和面内弯矩最大.  相似文献   

10.
芜湖长江公路二桥主桥为主跨806m双塔四索面全飘浮体系斜拉桥。为了改善其纵、横向抗震性能,提出斜置阻尼约束体系,并给出斜置阻尼约束体系的参数设计流程。采用MIDAS Civil软件建立全桥有限元模型,采用非线性时程分析方法计算斜置阻尼器的参数,并分析该桥在塔梁横桥向自由、铰接及设置斜置阻尼约束体系3种不同约束体系下的地震响应。结果表明:采用斜置阻尼约束体系后,该桥的塔梁相对位移、塔底剪力和塔底弯矩均大幅降低,斜置粘滞阻尼约束体系对桥梁纵、横向地震响应均有很好的控制效果。  相似文献   

11.
高墩弯桥结构形式在高山深谷地区极具优势。为研究桥梁结构参数变化以及地震动输入方向对高墩弯桥地震响应特性的影响,以贵州省坞家塆大桥为研究对象,采用有限元软件Midas/Civil建立多个参数模型,研究了横桥向与顺桥向地震输入作用下曲率半径值、高低墩差值变化对高墩弯桥地震响应特性的影响,分析了地震动输入方向以30°间隔由顺桥向地震输入变化到横桥向地震输入时对桥梁地震响应特性的影响;得出了控制截面位移与弯矩等参数改变的变化规律,总结了各参数变化对地震响应特性的影响程度。  相似文献   

12.
为了确定强震作用下斜拉桥的合理横向抗震约束体系,以可克达拉大桥为工程背景,采用非线性时程分析法,分析了4种横向约束体系即横向滑动体系、全限位体系、位移相关型减震体系和速度相关型减震体系对强震区大跨度桥梁地震响应的影响,重点对钢阻尼器的屈服荷载和黏滞阻尼器的位置及相关参数进行优化分析,并与其他体系的地震响应进行了对比。结果表明:在强震作用下,对于大跨度桥梁,横向滑动体系和全限位体系均不是理想的抗震体系;而在墩、梁之间设置减隔震装置可以显著减少横桥向的墩梁相对位移及地震剪力和弯矩;桥塔底的地震剪力和弯矩对减震装置参数的变化不敏感。  相似文献   

13.
大跨直立混凝土斜拉桥以其开阔的桥面视野、优美的造型被我国诸多市政桥梁工程所采用,然而,相比普通大跨钢斜拉桥,该类桥梁存在上部结构自重大以及横向稳定性的问题。本文以采用该造型的某实例桥梁工程为背景,考虑了塔梁连接方式的不同:固结体系、漂浮体系、弹性约束体系。分别研究了桥梁采用不同模型时的动力特性,分析结果表明,固结体系的动力特性表现不如漂浮体系和弹性约束体系,且在地震作用下更容易损伤。尽管漂浮体系和弹性约束体系在地震作用下会产生较大位移,但结构内力得到很大程序的减小。因此,后两种体系更加适用于该类斜拉桥。  相似文献   

14.
建立某曲线刚构-连续组合梁桥的空间有限元计算模型,在桥梁活动支座部位设置粘滞阻尼器,进而考虑曲率半径的变化,计算分析了结构在3条3向地震动作用下曲率半径变化对结构反应以及粘滞阻尼器减震效果的影响.结果表明:不添加阻尼器的曲线梁桥的动力反应不仅与曲线桥的曲率半径有关,而且还跟地震动特性有关;添加粘滞阻尼器后控制点内力在不同地震动作用下均随着曲线桥曲率半径的增大而增大;粘滞阻尼器对于曲线桥控制点内力和主梁位移的减震率在不同地震动作用下均随曲线桥曲率半径的增大而减小.为粘滞阻尼器在不同半径曲线梁桥上的应用提供了理论指导.  相似文献   

15.
多塔矮塔斜拉桥抗震结构体系研究   总被引:1,自引:0,他引:1  
宁江松花江特大桥是一座位于地震烈度Ⅷ度区的多塔矮塔斜拉桥,对主桥的抗震结构体系进行详细研究,确定了一个主墩固结,其余桥墩设置滑动支座及横桥向弹塑性阻尼器的抗震结构体系,采用多振型反应谱法和非线性时程法对选定的抗震结构体系进行了两阶段抗震性能动力分析.  相似文献   

16.
大跨度公铁两用钢桁梁斜拉桥是一种技术复杂的特殊桥梁,为系统地把握该类型桥梁结构在地震作用下的动力响应规律,总结该类桥梁的总体结构特征,统计分析5座公铁两用大桥的结构动力特性值,利用有限元数值仿真方法分析不同结构抗震约束体系的地震响应特点,统计粘滞阻尼器的减震效果并解释效果差异的原因。研究表明:大跨度公铁两用斜拉桥的竖向刚度与公路斜拉桥相比有明显差异,前者的竖弯基频比后者平均高20%左右;在多种结构抗震约束体系中,具有耗能显著特点的液体粘滞阻尼器体系是一种较为理想的结构抗震支承体系;采用粘滞阻尼器后,6座大桥桥塔的弯矩减震率呈现20%左右与60%以上两种不同表现结果,该现象主要与地震动输入的长周期成分取值有关;由于剪力比弯矩的阶次低,导致桥塔剪力比弯矩的减震效果低;粘滞阻尼器对梁端位移的减震效果显著,可达到60%~80%。  相似文献   

17.
工程中常采用的斜拉桥横向固定体系会增大桥墩、桥塔及其基础的抗震需求,从而增大斜拉桥在地震作用下的损伤破坏风险。为解决这一问题,以已研发的桥梁新型横向钢阻尼器为减震耗能装置,采用振动台试验方法,研究大跨度斜拉桥横向减震体系在近、远场地震作用下的减震效果。以苏通大桥为背景,设计1/35几何相似比的斜拉桥全桥试验模型,并分别进行横向减震体系和传统的横向固定体系的振动台试验。其中,将钢阻尼器与滑动型球钢支座并联布置于桥墩处、钢阻尼器布置于桥塔处形成横向减震体系。基于试验结果进行减震体系的减震行为分析。研究结果表明:在近、远场地震作用下,减震体系均能显著地减小主梁传递给桥墩和桥塔的地震力,其中墩梁、塔梁连接横向传力均减小50%以上,且将主梁位移限制在可接受范围内;减震体系也显著减小了塔身位移、曲率以及墩底曲率需求,其中,塔底截面曲率平均减小了34%,近塔辅助墩墩底曲率平均减小了67%;钢阻尼器拥有饱满的滞回曲线,但其滞回特性与地震输入有关;相对于支座的摩擦耗能,钢阻尼器的耗能能力更显著;在带有速度脉冲的近场地震作用下,钢阻尼器以及支座的位移响应具有明显的脉冲特点。  相似文献   

18.
为研究波形钢腹板连续刚构桥地震响应特性,分别对主跨160 m的PC及波形钢腹板连续刚构桥进行时程响应分析。采用MIDAS建立2种连续刚构桥模型,分析模型基本动力特性和在3种地震波作用下的地震响应。分析结果表明:波形钢腹板连续刚构桥振型贡献率无明显集中现象;地震波作用下,桥墩及主梁产生的轴力和绕横桥向弯矩较PC连续刚构桥大,绕顺桥向弯矩较PC连续刚构桥小;主梁跨中节点位移顺、横桥向均较PC连续刚构桥大;加速度衰减速度,顺桥向较PC连续刚构桥小,横桥向较PC连续刚构桥大;在主梁截面设计中,仍以静力计算结果控制。  相似文献   

19.
季小勇 《中南公路工程》2012,(2):176-178,185
建立了列车荷载作用下高速铁路桥墩模型,将桥墩纳入高速铁路简支梁桥全桥体系中进行动力分析.采用弯矩-曲率关系计算程序以及有限元软件,对高速铁路桥墩进行弹塑性分析计算,分别计算了罕遇地震作用下不同车速和不同地震作用组合等工况下的桥梁的弹塑性地震响应。计算结果表明,随着车速的增加,桥梁的地震响应呈上升趋势,结构位移较大;罕遇地震作用下高铁桥梁墩底进入弹塑性状态,给出塑性铰长度数值计算结果,并与AASHTO规范对比验证。  相似文献   

20.
为研究板式橡胶支座梁桥横向约束体系的减震性能,制作某(30+30)m两跨一联的桥面连续简支梁桥大比例缩尺全桥结构模型,对缩尺模型进行振动台试验,研究无约束自由滑动体系、X形板弹塑性挡块约束体系及钢筋混凝土挡块约束体系的地震反应。试验结果表明:地震动输入过程中,板式橡胶支座、X形板弹塑性挡块及钢筋混凝土挡块均有损伤或弹塑性变形,提供体系的能耗增加;随着地震强度的增加,无约束自由滑动体系中板式橡胶支座发生滑动,梁体出现永久残余位移;设置钢筋混凝土挡块体系的墩梁最大相对位移最小;X形板弹塑性挡块体系能大量耗散地震能量,有效减少墩梁间相对位移以及传递至下部结构的梁体地震力,使桥墩及基础免遭严重损伤,减震性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号