首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《公路》2020,(2)
相比于传统的钢筋混凝土和圬工涵洞工程,波纹钢管涵结构具有优良的施工和使用性能。随着覆土波纹钢管涵的发展,其跨径也越来越大,但境内对跨径10m以上的大跨径波纹钢管涵结构的研究目前还未开展。依托一座跨径15.3m的覆土管拱形波纹钢板桥涵实际工程,提出两种对大跨径覆土波纹钢管涵的加强方案,并使用通用有限元分析软件ABAQUS对未加强和加强的工况分别建立模型进行数值模拟,分析了各工况下波纹钢管涵的应力和变形情况。结果表明,当在大跨径桥涵工程中采用深波纹、大壁厚的波纹钢管涵时,在结构下部采用细石混凝土进行加强能够大幅改善结构的受力性能,加强后的大跨径覆土波纹钢管涵的变形和应力均能较好地满足设计使用要求。  相似文献   

2.
为研究不同钢内衬加固钢筋混凝土管涵的加固效果及其力学特性,对不加固的钢筋混凝土管、10 mm厚平钢管内衬加固钢筋混凝土管、波纹钢管内衬加固钢筋混凝土管3个试件进行两点加载试验,测试P—Δ曲线及截面应变。试验结果表明:采用直接加固方式时,波纹钢管内衬加固钢筋混凝土管、平钢管内衬加固钢筋混凝土管的极限承载力分别比未加固圆管的极限承载力提高240%、22%;加固形成的钢筋混凝土—内填混凝土—内衬波纹钢管截面为部分组合截面;钢筋混凝土—内填混凝土—内衬平钢管截面接近非组合截面,其受力过程与未加固管截面受力过程相似。  相似文献   

3.
郑天  曹野  付頔 《路基工程》2021,(6):206-209
为了探明新建路基对既有天然气管道安全的不利影响,利用有限元方法建立了计算模型,分析管道壁厚、管道埋深、管道直径、埋土弹性模量、泊松比等5个因素对管道应力和变形的影响规律。结果表明:增大管道壁厚及管径或者适当加大埋深,均可减小管道应力和变形,而埋土弹性模量及泊松比这两个因素对管道应力和变形影响较小;当管道直径大于50 mm、管壁厚度超过10 mm以及埋深大于1.65 m时,可以满足管道强度安全要求。  相似文献   

4.
对直径为1.5m的小孔径螺旋波纹钢管涵洞进行现场测试,用有限元软件对管周和轴向测试数据进行分析,并将分析结果与现场涵洞的实际变形情况进行对比。结果表明:螺旋波纹管波谷、波峰的切向应变差值与所处位置基本无关;车辆在路面行驶时,螺旋波纹管波峰、波谷出现的都是拉应变。该研究为国内螺旋波纹钢圆管涵洞的使用和分析提供了依据。  相似文献   

5.
宁波舟山港主通道工程70m跨非通航孔主桥和62.5m跨非通航孔引桥采用螺旋焊缝钢管桩(每根桩上、下部分壁厚不同),桩径分1.6m、1.8m、2m三种规格,最大桩长109m。针对钢管桩大直径、超长、不等壁厚等特点,钢管桩采用全自动化整桩螺旋卷制生产制造方案。制造过程中,将2根桩相同壁厚部分连起来制造,采用在线预精焊、全自动激光跟踪扫描智能化纠偏焊接技术、钢带对接外焊缝自动焊接设备和剪力环自动焊接专用机器设备,建立大直径、超长钢管桩全自动化生产线,实现钢管桩高质、快速制造。该技术的应用,使钢管桩焊接质量一次检测合格率达99.5%以上,加工效率提高2.5倍,仅用16个月,完成了24万吨钢管桩的制造。  相似文献   

6.
姚晓励  张钰  刘保东  马杰 《公路》2023,(5):390-398
为了明确装配式波纹钢管隧道(FCSPT)在不同断面情况下的受力特性,设计了3种断面形状(圆形、管拱形、半圆形)的跨度均为10.4 m的波纹钢管(明挖)隧道,并借助ABAQUS有限元软件建立二维平面应变模型,对不同断面形状的装配式波纹钢管隧道在覆土荷载作用下的变形、内力、应力以及管周土压力分布情况展开研究。研究结果表明:相同覆土情况下,半圆形波纹钢管隧道变形远远小于圆形及管拱形;3种断面隧道内力最大处有所不同,圆形隧道在仰拱及起拱线位置,管拱形隧道在拱腋及其下方曲率变化较大处,而半圆形隧道集中在拱脚位置;3种断面形状的波纹钢管隧道起拱线以上区域管周土压力分布非常接近,而圆形与管拱形隧道之间管周土压力的差别主要出现在起拱线以下的拱腋及仰拱区域。  相似文献   

7.
提出更新隧道逃生管道选材,把送风管与逃生管串连的隧道逃生管道设计技术.分别以钢带PE波纹管和钢管作为逃生管道进行抗冲击试验.试验结果表明,2种材料均能满足应急逃生的需求,但钢带PE波纹管作为隧道逃生管道具有造价低、连接方便等优点.分析结果可为隧道逃生管道的安全设计提供理论参考.  相似文献   

8.
漳州古雷港区南2号作业区码头平台离岸591.5m,采用7跨下承式柔性吊杆钢拱桥连接海岸陆域.该桥最大计算跨径为85 m,计算桥宽为13m.拱肋由 φ813 mm、壁厚20 mm的无缝钢管组成,下弦系杆采用焊接钢箱,拱脚节点由2块厚22 mm的整体钢板插入拱肋钢管,并与下弦系杆腹板对焊组成.吊杆采用φ80 mm的实心合金...  相似文献   

9.
罗彦斌  陈建勋  杨东辉  李栋 《隧道建设》2016,36(12):1435-1441
为研究隧道锁脚锚管在端头竖向荷载作用下的受力特性,采用了一种隧道锁脚锚管受力特性的测试方法--应变片外贴导线内引的电测法,该方法克服了钢管表面贴片易损坏、引线困难等难题。以工程上经常使用的长为3.5 m、直径为42 mm、壁厚为4 mm的热轧无缝钢管为例,系统介绍了测试锁脚锚管受力特性的试验设计方案,包括锁脚锚管管身轴向应变测试和管身弯矩测试。给出了锁脚锚管受力测试装置的设计与工艺,包括测力锚管的加工和温度补偿条的加工工艺。采用现场实测的方法,在某土质边坡对该方法进行了应用,将锁脚锚管安装在边坡土体中,然后在锁脚锚管端头加载,测试其受力状况。试验结果表明: 锁脚锚管受力测试装置安设完毕后,测点成活率达到100%;锁脚锚管端头垂直加载,管身最终变形和试验测试结果相吻合;该试验方法能够真实反映锁脚锚管的受力特性。  相似文献   

10.
昌九高铁扬子洲赣江公铁大桥西支主桥为(48+144+320+144+48) m无砟轨道钢箱桁组合梁斜拉桥。桥塔墩位于通航河道内,桥位处河床覆盖层浅,基岩强度高,基础由大直径钻孔桩和矩形嵌岩低桩承台组成,承台采用锁口钢管桩围堰施工方案。G33号主墩围堰平面设计尺寸54.56 m×28.52 m,锁口钢管桩采用Q345B材质■1 020 mm螺旋钢管,长28 m,钢管桩之间采用C-T形锁扣连接;围堰设置4层内支撑,单层内支撑设3道对撑,内支撑四角设型钢斜撑;基底设置混凝土垫层参与围堰结构受力。围堰采用XR360旋挖钻机在岩层中引孔,孔内换填细砂后插打钢管桩,钢管桩壁内、外两侧换填砂采用高压旋喷注浆加固。围堰设置智能化监测系统,对围堰受力、变形等进行实时动态监控。实践证明,该桥围堰结构安全可靠、止水效果良好、施工快捷高效。  相似文献   

11.
李晓龙  李捷  许江波  韩馨 《公路》2021,66(12):48-53
为揭示大直径金属波纹管涵与普通钢管涵受力性能的差异性,定量分析其力学性能,采用FLAC3D软件对跨径10.0m的两种管涵进行数值模拟,分别计算其在不同的填土高度下的力学参数并绘制关系曲线.研究发现:(1)对比"土柱法"和"加拿大CHBDC"中土压力计算方法可知,填土较低时(≤1.5m)土柱法较为适用,随着填土高度增加(>1.5 m)涵洞通过形变获得被动土压力,从而将荷载转换为环向应力,则CHBDC法更适合涵洞的计算;(2)波纹钢管涵的最大沉降、最大横向位移、最大横向应力、最大竖向应力分别为普通钢管涵的79.37%、58.82%、73.52%、108.70%,除最大竖向应力相近外其余3项指标均明显偏小;(3)计算所得涵洞最大应力均远低于钢材屈服极限,因此在设计时应将沉降和横向位移作为主要控制因素.研究成果对高寒地区波纹钢管涵的应用具有一定的指导意义.  相似文献   

12.
借助上海某下立交工程,分析条形深基坑开挖对临近大直径管线影响,可知围护结构宜采用直径1 000 mm钻孔咬合桩,较大的围护刚度对控制基坑变形作用明显。污水管竖向位于坑底附近,水平方向处于基坑理论破裂角之外时,主要发生开挖面的水平位移;污水管竖向位于坑底之上,竖向处于基坑理论破裂角范围内时,位移值相比较大,矢量方向指向坑脚;污水管竖向位于坑底以上,竖向处于基坑理论破裂角外时,总位移方向指向坑脚。通过分析,得出管道与基坑水平距离、管道覆土埋深是管道变形的主要影响因素(除基坑工程本体以外),管径为次要因素。可为以后类似工程提供参考。  相似文献   

13.
波纹钢箱形结构相较于圆形、拱形和管拱形波纹钢结构截面利用率更高,更适用于路基高度受限的情况。目前对波纹钢箱涵加强措施的研究较多,但缺乏对波纹钢截面形式选择的研究。该文使用有限元分析软件Abaqus对波纹钢箱涵侧墙倾斜角度分别为0°、5°、10°、15°和20°共5种工况建立有限元模型,对结构应力和变形结果进行分析。结果表明:增大波纹钢箱涵侧墙的倾斜角度可以有效减小结构的竖向变形和结构的最大应力;但为充分发挥波纹钢箱涵截面利用率高的优势,推荐选用倾斜角度5°~10°的波纹钢箱涵形式。  相似文献   

14.
钢管混凝土支架注浆孔补强技术数值模拟分析   总被引:3,自引:0,他引:3       下载免费PDF全文
钢管混凝土支架在井下注入混凝土时要留设注浆孔,为了弥补注浆孔周边钢管刚度,实施了加强板、插入注浆短管和封孔塞3项补强措施。采用ABAQUS有限元软件分析在弹性加载条件下钢管的应力分布特征,注浆孔导致孔口两侧的压应力集中系数最大,为8.45;采用3项补强措施后,钢管注浆孔附近的压应力集中程度明显降低。通过数值分析并优化出补强措施:加强板为500mm×300 mm×10 mm,注浆短管为直径133 mm×8 mm,封孔塞直径为116 mm×40 mm。优化的补强措施有效降低了应力集中程度和补强措施的用钢量。  相似文献   

15.
宋远  黄明利  李兆平 《隧道建设》2020,40(Z2):161-173
针对传统格栅钢架和自主设计的4肢钢管钢架支护结构,利用Abaqus通用有限元软件,综合考虑钢管厚度、构件质量、材料成本等因素,系统开展2种隧道支护结构在单独受荷和共同受荷条件下的极限承载力、抗弯刚度、弯曲挠度、破坏形态等力学特性及演化规律的对比试验研究。研究结果表明: 1)钢管钢架和格栅钢架在刚度、承载力、变形破坏形态等方面存在一定差异,在用钢量相同的情况下,钢管钢架具有更高的强度和抗弯刚度,结构变形和受力亦更加合理; 2)钢管钢架自身承载力受钢管壁厚参数影响较为显著,壁厚取值过小会明显降低其承载力,但当壁厚达到一定数值时,继续增加壁厚对提高构件整体强度和抗弯刚度有限,同时会相应增加构件质量和材料成本; 3)在单独受荷条件下,格栅钢架的承载力为445 kN·m,较钢管钢架构件PG-2低393%,此时钢管钢架质量较格栅钢架略低,但每延米单价要高; 4)格栅钢架混凝土构件的极限荷载为174.6 kN·m,较钢管钢架混凝土构件C+PG-2、C+PG-6的极限荷载分别低2.7 %、30.6 %; 5)钢管钢架对于早期变形速度较大的围岩具有较好的适用性。  相似文献   

16.
鄂东长江大桥主5号墩基础为深水基础,共设33根覆盖层内直径为2.8 m、基岩内直径为2.5 m的钻孔灌注桩,桩长71 m.采用钢护筒支撑平台配动臂吊机的钻孔施工方案,充分利用直径2.85 m、厚25 mm钢护筒作为主受力结构,平联结构兼作钻孔泥浆循环管.采用MIDAS Civil有限元软件对平台形成过程中钢护筒的打设、平台使用阶段、钻孔施工阶段等3种工况进行计算分析,结果表明,钻孔施工平台整体结构稳定,各杆件应力均小于容许应力,平台应力和变形均能满足施工要求.  相似文献   

17.
为防止深中通道岛隧结合部暗埋段、E1管节、E2管节差异沉降过大,进而导致管节接头剪力键剪力及管节内力过大,通过对岛隧结合部沉管基础采取预加固措施,研究不同段落地基与基础参数,分析计算出E1管节预抬量合理值。通过室内试验及现场试验获取关键参数并开展大型三维有限元分析,研究管节应力及沉降特性。根据室内试验确定考虑预压30k Pa的1.0m厚碎石垫层变形模量取值为:0~30k Pa段为25.4MPa,30~110k Pa段为8.9MPa。根据现场试验确定块石垫层变形模量取值为50MPa。依据上述参数开展有限元分析,最终确定岛隧结合部沉管基础加固措施及管节的预抬量值为70mm。  相似文献   

18.
采用ANSYS有限元分析软件,建立二维平面应变有限元模型,选择等跨径圆形截面和管拱形截面管涵,对二者在不同填土高度下的力学性能特点进行了对比研究。首先通过有限元数值模拟值与试验模型实测值进行对比,验证了有限元模型的合理性;进而通过有限元模型计算,对圆形截面和管拱形截面管涵施工过程中随填土高度的增加管涵变形、应力和土压力的变化情况进行比较分析,得到了两种截面形式的管涵在变形和内力方面的一般性规律:两种截面形式的管涵在施工过程中的变形和内力变化趋势基本一致,管拱在填土超过管顶后的变形变化比圆管显著,竖直土压力略小,而由于起拱效应的影响,管顶以上填土1.1 m左右时,圆管截面最大应力略大于管拱截面最大应力。  相似文献   

19.
HDPE双壁波纹管是在市政排水工程中应用较广的一种新型材料,通过对它与传统钢筋混凝土圆管的比较分析,显示出HDPE管在市政排水工程中的应用优势,对其进行经济性评价,得到的结论为:管径不大于800 mm时,若埋深小于2.5 m,大多数情况下混凝土管的铺设单价要比HDPE管低;若埋深大于2.5 m,则混凝土管的铺设单价比HDPE管要高;管径大于800 mm时,任一埋深HDPE管的铺设单价都比混凝土管高得多。  相似文献   

20.
针对公路钢桥桥面结构因自身刚度相对较弱和抗拉拔力不足,出现铺装层病害和钢桥面板疲劳开裂等现象,提出一种基于钢管连接件的钢-UHPC组合桥面板结构,为研究该新型连接件组合桥面板的抗剪性能,开展了推出试验,并结合试验验证后的非线性数值模型得出了试件的工作机理。运用非线性数值模型分析了抗剪连接件厚度、连接件屈服强度、UHPC抗压强度对抗剪承载力及抗剪刚度之影响。研究表明:钢管连接件推出试验破坏形态为下缘焊缝附近的钢管壁沿焊缝方向被剪切断裂,其下部UHPC被压碎;参数分析得出其他参数不变的情况下,抗剪性能随连接件钢管壁厚和钢材强度均呈线性增长;不同的连接件壁厚对应合理的UHPC轴心抗压强度取值,钢管外径为40 mm的情况下,壁厚从3、4、5、6 mm变化取值,对应的UHPC抗压强度合理值分别为100、120、140、160 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号