首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了多模块铰接式胶轮承载的导轨式胶轮电车系统架构和主要技术参数。阐述了单元式铰接车体的组成和运动学关系。利用MSC ADAMS软件分析了车辆在小半径平曲线、小半径竖曲线及小半径S型曲线线路条件下的通过性能。校验了走行部与车体之间、车体自身之间是否有干涉发生,并计算了车体相对最大转角,确认铰接机构运行关系满足车辆运行需求。  相似文献   

2.
采用车辆动态包络线计算方法,得到车体在转向架中心销位置的横向和垂向偏移量。采用几何计算结合绘图法,得到车辆通过不同曲线时的姿态。以前后两车间车钩长度为变量,迭代得到设定的车钩长度,从而确定并绘制出前后连挂车辆的姿态。得到车钩摆臂角、风挡折角等参数,通过作图法可以得到车间连接件的姿态以及车间距离。分析了车辆连挂状态通过圆曲线、S型曲线等工况下,车辆处于曲线不同纵向位置时,最大车钩摆臂角及极限车间距。从分析结果可见,在相同的曲线半径下,车辆连挂通过圆曲线时达到车间极限距离;通过S型曲线时达到车钩最大摆臂角。车辆在曲线上的纵向位置对车间连接姿态影响很大。  相似文献   

3.
通过一种解析和作图相结合的方法求得铰接式低地板车辆在通过曲线时车体与转向架之间的转角,并与多体动力学分析软件SIMPACK计算结果相比较,误差较小;建立整车模型分析车体长度对车体与转向架转角以及动力学性能的影响。研究结果表明,在轮重减载率,平稳性不超过标准限值的情况下可以通过增加中间车体长度减小端车长度获得较大的运载能力及良好的曲线通过性能。  相似文献   

4.
为分析列车在曲线轨道上制动时车钩偏角对车辆运行安全性的影响,建立了前后两节车辆之间的连挂关系,导出车钩偏角随轨道曲线半径、车辆长度和车钩长度的关系,通过求解3节车辆的中间车辆车体的通用载荷方程,导出车辆前后心盘所受的横向载荷.运用多体动力学方法,建立3节车辆的动力学模型,分析前中后不同车辆长度下中间车辆的运行安全性.分析结果显示:列车在曲线轨道上制动时,轨道曲线半径与不同长度的车辆连挂方式对心盘处的横向力影响较大;重车条件下,车辆的连挂方式主要影响车辆对轨道的作用力;空车条件下,车辆的连挂方式会影响车辆的运行安全性.  相似文献   

5.
为了高效模拟三模块低地板车辆曲线通过能力,文章提出一种仿真分析方法.该方法基于几何法,利用VB.NET语言对NX进行二次开发,实现了车体和转向架转角的解算,并自动输出车体和转向架转角曲线图及车体之间转角曲线图,解决了传统CAD校核无法精确、快速解算车体和转向架转角的难题.  相似文献   

6.
基于车辆-轨道耦合动力学理论,采用仿真软件研究不同运行条件下高速列车通过竖曲线起点时的动力学性能,并计算得出高速铁路竖曲线的最小半径和最小长度的推荐值。结果表明:车体垂向振动加速度随竖曲线半径的增大而下降,与纵坡坡度的关系不明显;为保证旅客的舒适度,运行速度250,300,350 km/h分别对应的最小竖曲线半径推荐值为14,21,29 km;竖曲线起点引起的车体振动衰减时间服从正态分布,与竖曲线半径、纵坡坡度以及运行速度的关系不大;为避免车体振动叠加,行车速度为350 km/h时,竖曲线最小长度应不小于110 m,在线路条件较好时应不小于120 m。  相似文献   

7.
4 地点检测与曲线检测 确定列车在线路上的运行位置的地点检测,主要是防止撞车及进行运转控制.而即使在车体倾摆系统中,为实现正确的车体倾摆,也必须在车辆上经常地、高精度地识别车辆本身位置与曲线的相对位置.  相似文献   

8.
由于车辆结构的差别,悬挂式单轨平面圆曲线参数与传统轮轨相差较大。为研究合理的圆曲线参数取值,本文运用行驶动力学理论,从乘客舒适度角度,对最小平面曲线半径和最小圆曲线长度等参数进行了计算研究,提出了相应的取值建议。当车辆最大偏转角不大于6. 843°,最大未被平衡离心加速度不大于0. 8 m/s~2,车速为80km/h时,最小平面曲线半径应不小于250 m。由于悬挂式单轨车辆的悬挂结构和参数与传统轮轨车辆存在较大区别,其最小圆曲线长度应不小于2V,是传统轮轨铁路的4倍。后续可在此研究成果基础上,利用车线耦合动力学理论,对乘坐舒适性、车线动力响应、车辆性能与线路参数之间的匹配关系等进行进一步研究,并综合考虑建设成本、运营维修等因素,合理确定各项参数。  相似文献   

9.
为合理确定山区米轨铁路平竖曲线重叠地段线形参数,基于动力学理论建立米轨车辆—线路动力学模型,分析山区米轨铁路线路平竖曲线重叠地段的竖曲线形式、竖曲线半径、圆曲线半径等变化对车线系统动力特性的影响。结果表明:平竖曲线重叠地段采用凸形竖曲线形式相较于凹形竖曲线形式列车的动力通过性能更好;平竖曲线重叠设置对乘坐舒适性的影响最大,对行车安全性及轮轨作用力影响相对较小;竖曲线半径变化主要影响车体垂向加速度,当竖曲线半径增至10000 m后,对车体垂向加速度影响较小;平面圆曲线半径变化主要影响车体横向加速度,当平面圆曲线半径大于2000 m后,对车体横向加速度影响较小。  相似文献   

10.
应用动态时程分析理论和有限元方法,建立六自由度轻轨半车车辆垂向动力分析模型,研究梁端位移包括梁端转角和错台引起线路垂向不平顺情况下,对轻轨车辆运行舒适度及安全性的影响。研究结果表明,梁端发生正的转角和负的转角只影响车辆垂向动力响应的方向,对幅值影响很小。随着桥梁转角的增大,车体的垂向位移、速度和加速度变化幅度均增大,基本呈线性关系。车辆从桥梁有转角一侧驶入无转角一侧,比从无转角一侧驶入有转角一侧的动力响应强烈,但转角达到4.2‰时,车体最大垂向加速度为0.094 g,可认为对车辆乘坐舒适性无影响,在实际发生的更小转角情况下,可忽略其对车辆运行平稳性的影响。随着错台高度的增加,车体垂向位移、速度和加速度值变大,但量值较小,对行车舒适性无影响。  相似文献   

11.
对机车车钩的钩头轮廓曲线进行数据离散,采用多体动力学软件SIMPACK反演得到钩头的轮廓曲面,建立1对连挂钩头间的曲面/曲面接触模型,与钩肩、止档及钩尾摩擦副模型,融合非线性缓冲器模型建立13A/QKX-100和DFC-E100型2种典型重载机车钩缓装置模型.仿真分析重载机车通过曲线时车钩的偏转行为,并与静态计算结果对比.结果表明:由传统的车钩转角静态计算方法只能计算理想状态下的车钩钩体中心线相对于车体中心线的转角(钩体转角);受钩头间的相对转角(钩头转角)及轨道曲率变化、不平顺等线路状况的影响,实际的钩体转角比静态计算结果大;机车曲线通过时钩缓装置的主要运动是钩体相对车体的转动,当钩体转角处于自由转角范围内时钩头转角较小,一般不超0.16°;当钩体转角达到自由转角且有继续增大的趋势时钩头间会产生明显的相对转动进行补偿,以使机车顺利通过曲线.  相似文献   

12.
客运专线道岔平面设计参数的动力学研究   总被引:1,自引:0,他引:1  
应用车辆—轨道空间耦合动力学模型对客运专线道岔的各种平面设计方案进行了动力学分析,同时研究了道岔渡线不同夹直线长度对行车舒适性的影响。针对侧向速度160 km/h和220 km/h客运专线道岔的各种平面参数设计方案,提出了动力响应较小的优化方案。此外,计算结果表明对于由单圆曲线组成的道岔渡线,必须设置夹直线,且长度应大于车辆的长度,而对于圆缓线型或缓圆缓线型道岔渡线,夹直线的长度对车辆横向动力学性能没有显著的影响,缓和曲线之间可插入任意长度的夹直线。  相似文献   

13.
建立空气弹簧橡气囊破裂失效的跨座式单轨车辆动力学模型,对失效时的车辆运行安全性能进行分析,重点考察了倾覆稳定性系数、水平轮径向力和车体侧滚角。分析结果表明:当空气弹簧失效后,车辆运行安全性变差,通过曲线时水平轮出现脱轨现象,影响车辆运行安全性;当车速达到43 km/h时,空气弹簧不同位置失效工况下车辆的防止脱轨稳定性较差,需要降速才能安全运行。  相似文献   

14.
动车组车体振动加速度是表征车辆运行状态的重要参数,也是评价车辆平稳性的关键指标。本文基于实车试验和仿真计算数据,研究不同速度条件下动车组车体振动加速度分布及时频域响应特征,得出了车体振动加速度和出现频次之间的函数关系,获取了轮对周长、轨道板长度、简支梁跨度等车体及线下基础设施周期性不平顺激励引起的车体振动响应与动车组运行速度的相关性特征。通过平稳性分析,得出了动车组平稳性和舒适度指标随动车组运行速度提升的变化规律。研究成果可为线路全程舒适性评估和线路方案优化提供支撑。  相似文献   

15.
低温超高真空管磁悬浮是当前世界各国争相发展的超高速交通方式之一。目前,该研究正处于起步阶段,有必要对其动力性能进行评估。以长沙至衡阳低真空管道磁悬浮试验线为例,建立低温超导电动悬浮制式的车辆-线路耦合模型,分析磁浮车辆通过该段线路时的动力性能。首先,计算得到以1 000 km/h速度运行时的车体垂向和横向加速度、悬浮力及导向力情况。在此基础上,绘制各动力性能指标的频数直方图,分析其在不同区间的分布情况,研究各动力性能指标随曲线半径的变化规律。研究结果表明,磁浮车辆通过长沙至衡阳线路时,计算得到的车体垂向和横向加速度均低于舒适性限值,动力性能满足要求;从车辆动力性能角度来看,缓和曲线长度设置为1 400 m合理;曲线半径20 000 m、车速1 000 km/h与横坡为16°相匹配,各项动力性能指标较优。研究结果可为超高速磁悬浮线路设计提供参考建议。  相似文献   

16.
为找出高速列车车体主要模态对车辆振动的影响规律,引入BGCI向量法对车体模态贡献量进行计算。建立某高速列车刚柔耦合模型,采用随机子空间法对车辆工作模态参数进行识别,通过模态置信判据MAC对主要模态进行判定,计算在不同运行速度下车体的模态贡献量。结果表明,车体刚体模态贡献量随列车运行速度增加逐渐减小,当列车运行速度低于120km/h时,车辆刚体模态贡献量大于弹性模态,速度高于120km/h时反之。当列车速度大于80km/h时,车体的菱形模态、垂向弯曲模态、扭转模态对车体振动贡献值逐渐增大(最大为0.035m/s2),弹性模态对振动贡献量明显增加。本文研究的模态贡献量与车辆振动关系可以为车辆振动控制提供理论支撑。  相似文献   

17.
以国内动车所普遍存在的半径250 m的S形曲线为研究对象,应用多体动力学软件建立CRH5动车组的动力学仿真模型,根据实际情况构造了线路工况,分析曲线半径、曲线超高和夹直线长度对动车组运行安全性的影响。研究结果表明:适当增大S形曲线的曲线半径可以改善曲线尤其是曲直过渡处的车辆安全性,提高动车组安全裕量;建议半径250 m的S形曲线超高设置为5 mm;建议一般S形曲线夹直线长度不应小于15 m。  相似文献   

18.
列车在曲线上运行时,因曲线圆度存在偏差引起车体晃动,不仅影响旅客的舒适度,同时又造成钢轨的侧磨,增加维修工作量。为此,对曲线圆度偏差影响列车晃动进行了理论分析,提出了控制快速区段列车晃动、加强快速行车条件下曲线养护的建议。  相似文献   

19.
为分析某运营期普速铁路160 km/h速度等级曲线区段的异常晃车问题,对晃车区段的轮轨廓形进行测量,分析了晃车区段的实测车体加速度与轨道几何不平顺数据的时频特征,进一步建立了车辆-有砟轨道耦合动力学仿真模型,采用试验研究和仿真计算相结合的方式研究了轮轨匹配特性和欠过超高状态对曲线区段车辆横向稳定性的影响。结果表明:异常晃车曲线区段车体横向加速度较大,存在明显周期性振动,车体横向加速度振动空间频率为0.024 m-1,对应波长为42 m;晃车曲线区段内外股钢轨廓形对称性差,外股钢轨轨顶面和轨距角处磨耗更严重,与实测车轮廓形匹配时轮轨接触点在轨顶面上更为集中;与采用LM&CHN60廓形相比,采用实测轮轨廓形通过曲线时的轮对横移量更大,轮对和转向架周期性振动更明显,周期性振动空间频率为0.024 m-1,与异常晃车频率相同;运行速度为60 km/h时的轮轴横向力显著增加,运行速度为160 km/h时的脱轨系数和轮重减载率显著增加;在曲线半径为5 000 m,超高为25 mm条件下,车辆以60 km/h和160 km/h的运行速度通过曲线时分...  相似文献   

20.
<正>最高运营速度达100 km/h的北京昌平线地铁车辆已在中国南车下线。该车辆采用中国南车青岛四方股份最新研制的SDB-140型新型转向架,列车的最高运营速度达100 km/h,是目前北京城市轨道交通运行速度最高的地铁车辆。昌平线地铁车辆车体采用国际先进的轻量化不锈钢车体技术,并对车体结构进行优化、创新设计,使车体的重量较同  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号