首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   

2.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

3.
Above sloping bottoms in the ocean mixing processes are not predominantly generated by shear-induced turbulence via bottom friction. Instead, the restratifying buoyancy forces and internal waves create a highly non-linearly varying environment including ‘stratified turbulence’. Most of the resulting vigorous mixing processes that dominate sediment resuspension occur during the passage of frontal bores or solitary boluses, ‘solibores’. Here, the observed evolution of different forms of highly non-linear strictly upslope moving ‘waves’, bores or boluses are reviewed from various NIOZ projects at deep sloping bottom sites ranging from 500 to 3000 m.Such fronts pass a fixed site within a few minutes, extending some 60 ± 30 m above the bottom and occurring over much larger periods at once per subinertial or meso-scale period or approximately, but not exactly, once per tidal harmonic period. In order to observe the details of such solibore one needs specific, high-sampling rate equipment. A suitable piece of equipment is a bottom-mounted 4-beam 300 kHz acoustic Doppler current profiler (ADCP), provided it samples at a rate of about once per second over a period of at least several weeks. Not just the three components of current velocity [u,v,w] are monitored over a range of some 80 m at 1 m intervals, but also the relative ‘echo intensity’ dI, which is a measure for suspended matter and stratified turbulence. Such ADCP-observations are combined and compared with high-resolution temperature measurements. Fine details show a turbulent inner core with more or less laminar streamlines outside it. Whether a front or a bolus, the bore is never observed as a completely closed contour, as swept up turbulent material is sucked into the core at the rear end.  相似文献   

4.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

5.
We present an approach that allows the estimation of vertical eddy diffusivity coefficients from buoy measurements made at two or more depths. By measuring the attenuation and phase lag of a scalar signal generated periodically at the surface as it propagates downwards, the vertical eddy diffusivity coefficients can be calculated as KωΔz2/2ln221), where α21 is the ratio of the real amplitudes at frequency ω at the two depths separated by Δz− z1; as KωΔz2/2, where φ is the phase lag at the frequency ω; or as KΔz2/ln2(U2/U1), where U2/U1 is the ratio of the complex signal amplitudes at the two depths. The method requires that horizontal fluxes be small at the ω frequency and that the signal-to-noise ratios at the two depths allow the determination of the amplitude and phase of ω.Application of this method to summertime 2004 western Long Island Sound oxygen and temperature buoy measurements at two depths provides a time-series of two-day average vertical eddy diffusivity estimates. Using these eddy diffusivities in conjunction with measured vertical concentration gradients, we obtain a time-series of vertical transport rates for oxygen and heat and estimate mean downward fluxes for June and July as 150–260 mMol m− 2 day− 1 and 100–400 W m− 2 respectively. These estimates are of a similar magnitude to sub-pycnocline O2 and heat demands of 240 ± 200 mMol m− 2 day− 1 and 180 ± 60 W m− 2 that we infer from simple budgets, implying that vertical transport is significant to both budgets.The eddy coefficients obtained from the independent O2 and temperature measurements have a 68% correlation, and the O2 flux estimates show a correlation of 41% to measured rates of change in bottom dissolved oxygen levels. Our results indicate that extended time-series of eddy diffusivity coefficients can be obtained from in situ buoy measurements and the method shows promise as a way to constrain the vertical transport variability in budgets of dissolved materials in estuaries.  相似文献   

6.
The hydrophysical and hydrochemical structure of the Sea of Azov, with developed bottom anoxia, was studied during the RV “Akvanavt” cruise from July 31 to August 03, 2001. The anoxic zone with a thickness from 0.5 to 4 m above the bottom was found in all deep regions of the Sea. Concentrations of hydrochemical parameters were similar to the pronounced anoxic conditions (about 90 mmol m− 3 of hydrogen sulfide, 17 mmol m− 3 of ammonia, 6 mmol m− 3 of phosphate, 7 mmol m− 3 of total manganese). The hydrophysical structure was characterized by the uniform distribution of temperature in the upper 6–7 m mixed layer (UML). Below this a thin (0.4–0.8 m) thermocline layer was observed, just above the anoxic waters. Formation of this phenomenon was connected with that summer weather conditions. Intensive rains led to increased influx of river waters in June. That resulted in large input of allochtonous organic matter (OM) and inorganic nutrients; the latter were consumed on the additional autochthonous organic matter production. In July the weather was characterized by a significant rise in the daily averaged air temperature and large oscillations of temperature during the day. In this period a wind of constant direction was absent, but wind bursts were observed. The completed analyses showed that the formation of such a structure could be connected with the following factors: (i) positive growth trends of the daily averaged temperature and the daily oscillations of temperature, (ii) presence of wind bursts. The joint action of these factors resulted in the formation of the UML. The amplitude of wind bursts determined the depth of UML, and the value of trend determined the value of the temperature change in the thermocline. An initial presence of bottom halocline (caused by the Black Sea water influx to the bottom of the Sea of Azov) prevented the heating of the bottom layer and therefore led to an increase of vertical gradient of temperature in the thermocline. The spatial distribution of the turbulent exchange coefficient confirmed the existence of a “stagnation” area located above the anoxia zone, which is also, apparently, the reason for its occurrence.  相似文献   

7.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

8.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

9.
Measurements of turbulence were performed in four frontal locations near the mouths of Block Island Sound (BIS) and Long Island Sound (LIS). These measurements extend from the offshore front associated with BIS and Mid-Atlantic Bight Shelf water, to the onshore fronts near the Montauk Point (MK) headland, and the Connecticut River plume front. The latter feature is closely associated with the major fresh water input to LIS. Turbulent kinetic energy (TKE) dissipation rate, ε, was obtained using shear probes mounted on an autonomous underwater vehicle. Offshore, the BIS estuarine outflow front showed, during spring season and ebb tide, maximum TKE dissipation rate, ε, estimates of order 10− 5 W/kg, with background values of order 10− 6 to 10− 9 W/kg. Edwards et al. [Edwards, C.A., Fake, T.A., and Bogden, P.S., 2004a. Spring–summer frontogenesis at the mouth of Block Island Sound: 1. A numerical investigation into tidal and buoyancy-forced motion. Journal of Geophysical Research 109 (C12021), doi:10.1029/2003JC002132.] model this front as the boundary of a tidally driven, baroclinically adjusted BIS flow around the MK headland eddy. At the entrance to BIS, near MK, two additional fronts are observed, one of which was over sand waves. For the headland site front east of MK, without sand waves, during ebb tide, ε estimates of 10− 5 to 10− 6 W/kg were observed. The model shows that this front is at the northern end of an anti-cyclonic headland eddy, and within a region of strong tidal mixing. For the headland site front further northeast over sand waves, maximum ε estimates were of order 10− 4 W/kg within a background of order 10− 7–10− 6 W/kg. From the model, this front is at the northeastern edge of the anti-cyclonic headland eddy and within the tidal mixing zone. For the Connecticut River plume front, a surface trapped plume, during ebb tide, maximum ε estimates of 10− 5 W/kg were obtained, within a background of 10− 6 to 10− 8 W/kg. Of all four fronts, the river plume front has the largest finescale mean-square shear, S2 ~ 0.15 s− 2. All of the frontal locations had local values of the buoyancy Reynolds number indicating strong isotropic turbulence at the dissipation scales. Local values of the Froude number indicated shear instability in all of the fronts.  相似文献   

10.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

11.
During a hydrographic survey in January 2006 the spreading of inflowing saline water was observed in the Arkona Basin (Western Baltic Sea). Two bottom mounted ‘pulse coherent’ acoustic Doppler profilers (PC-ADP) were used to measure the near-bottom current field of the dense plume with a high temporal (1 s) and spatial resolution (5 cm). In order to estimate the dissipation rate of turbulent kinetic energy () a structure function approach was applied to the beam velocity data. Simultaneous measurements with a microstructure shear profiler (MSS) and an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. Additional measurements with standard CTD, near-bottom towed and vessel mounted acoustic Doppler current profilers (ADCP) completed the data set.The estimated dissipation rates from the structure function approach fit well with the values derived from the ADV and the MSS probe. It is shown that the structure function approach is a reliable and easily applicable method to derive estimates of TKE dissipation rates from PC-ADP beam velocities. The observed dissipation rates ranged between 5 · 10− 6 and 1 · 10− 8 W kg− 1 depending on the hydrographic conditions. Inside the plume the dissipation rates exceeded that of the overlaying brackish water by two orders of magnitude. Since the noise level of velocity data in pulse coherent mode is considerably lower than in the Doppler mode the PC-ADP can also be used for estimates in marine environments with low turbulence level. Reynolds stresses estimated from the PC-ADP and the ADV agreed well at the same depth level. TKE production derived from PC-ADP measurements compared reasonably well with the dissipation rate of TKE in a varying environment.  相似文献   

12.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   

13.
Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened waves and a wind speed of 13 m s− 1. Bubble plumes exhibited a wide range of bubble distributions, physical extent and dynamics. A classification scheme was developed based on plume extent and “optical density” which is the ability of a plume to optically obscure the image of the background until maximum penetration of the plume. Plumes were classified as either dense (obscure) or diffuse (no-obscure). For each class, the plume bubble population size distribution, Φ(r,t), where r is the bubble radius and t the time, was determined. Dense plumes have a large radius peak in Φ and thus are enhanced in large bubbles. Diffuse plumes are well-described by a weakly size decreasing Φ(r,t) for r < 1000 μm and a more strongly size decreasing Φ(r,t) for r > 1000 μm.The bubble-plume formation rate, P, for each class, wave-breaking rate and wave characteristics were measured with respect to fetch. Wave-breaking rate and intensity are strongly fetch-dependent. In general, the trends in P and wave breaking are similar, reaching a maximum at the fetch of maximum wave breaking. The ratio of P for dense to diffuse plumes is even more sensitive to the occurrence of the most intense wave breaking, where dense plume formation is the greatest.Using P and the bubble size population distributions for each plume class, the global bubble-plume, injection size distribution, Ψi(r), was calculated. The volume injection rate for the study area was 640 cm3 s− 1 divided approximately equally between bubbles smaller and larger than r  1700 μm.  相似文献   

14.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

15.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

16.
Microstructure profiling measurements at two locations in the Yellow Sea (a deeper central basin and a local shelf break) were analyzed focusing on tidal and internal-wave induced turbulence near the bottom and in the pycnocline. A classical three-layer density structure consisting of weakly stratified surface and bottom boundary layers and a narrow sharp pycnocline is developed by the end of warm season. Turbulence in the surface layer was not influenced by the tidal forcing but by the diurnal cycle of buoyancy flux and wind forcing at the sea surface. The enhanced dissipation and diffusivity generated by the shear stress at the seafloor was found in the water interior at heights 10–15 m above the bottom with a phase shift of ~ 5–6 m/h. No internal waves, turbulence, or mixing were detected in the pycnocline in the central basin, in contrast to the pycnocline near the local shelf break wherein internal waves of various frequencies were observed all the time. The thickness of the surface layer near the local shelf break slightly exceeded that of the bottom layer (20 vs. 18 m). A 5–6 m high vertical displacement of the pycnocline, which emerged during the low tide, was arguably caused by the passage of an internal soliton of elevation. During this episode, the gradient Richardson number decreased below 0.25 due to enhanced vertical shear, leading to local generation of turbulence with dissipation rates exceeding the background level by an order of magnitude.  相似文献   

17.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

18.
Air–sea flux measurements of O2 and N2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air–sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air–sea gas transfer occurring at wind speeds in excess of 35 m s− 1. In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20−30 cm s− 1. These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air–sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173–205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air–sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air–sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining “surface equilibration” terms that allow exchange of gases into and out of the ocean, and “gas injection” terms that only allow gas to enter the ocean. The model was tested against the Hurricane Frances data set. Although all the model parameters cannot be determined uniquely, some features are clear. The fluxes due to the surface equilibration terms, estimated both from data and from model inversions, increase rapidly at high wind speed but are still far below those predicted using the cubic parameterization of Wanninkhof and McGillis [Wannikhof, R. and McGillis, W.R., 1999. A cubic relationship between air–sea CO2 exchange and wind speed. Geophysical Research Letters, 26:1889–1892.] at high wind speed. The fluxes due to gas injection terms increase with wind speed even more rapidly, causing bubble injection to dominate at the highest wind speeds.  相似文献   

19.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

20.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号