首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用植物油基与石化油基两种再生剂对就地热再生沥青混合料的力学性能进行对比研究,通过沥青针入度、延度以及软化点试验确定再生剂最佳掺量,并在此基础上采用车辙试验、弯曲破坏试验、冻融劈裂试验及动态模量试验分别评价再生沥青混合料的力学性能。结果表明:随着再生剂掺量的增加,沥青的针入度、延度升高,软化点下降;在相同掺量下,植物油基再生沥青针入度、延度高于石化油基再生沥青,综合考虑经济性与功能性要求,推荐该老化沥青植物油再生剂的最佳掺量为14%.植物油基再生混合料的高温动稳定度约为石化油基再生混合料的85%,而低温最大弯拉应变高出其21%,残留稳定度及冻融劈裂强度比两者均达到90%以上,在标准设计条件下动态模量与SMA类沥青混合料相当,综合力学性能优秀。植物油基再生剂资源丰富、价格低廉、性能优良,在就地热再生沥青路面中具有广阔的应用空间。  相似文献   

2.
为分析不同掺量再生剂与SBS改性沥青对再生沥青的高温蠕变和低温松弛等性能的影响,进行了沥青的针入度、软化点、延度、多重应力蠕变恢复(MSCR)与沥青弯曲蠕变试验(BBR)。试验结果表明:随着再生剂和SBS改性沥青掺量的增加,再生沥青的针入度和延度会逐渐升高,而软化点则会逐渐降低。当再生剂掺量为4%,SBS改性沥青掺量为70%时,再生沥青的针入度、软化点、延度均与SBS改性沥青接近。掺入再生剂和SBS改性沥青后,再生沥青的不可恢复蠕变柔量增大,而蠕变恢复率和松弛速率均降低。掺入再生剂和SBS改性沥青既能改善再生沥青的低温松弛性能,也能损害高温蠕变性能。  相似文献   

3.
Evotherm温拌再生沥青混合料路用性能研究   总被引:2,自引:0,他引:2  
通过沥青混合料车辙试验、冻融劈裂试验、小梁弯曲试验,对Evotherm温拌沥青混合料及热拌沥青混合料的高温性能、水稳定性能、低温性能进行了试验研究。试验结果表明:Evotherm温拌剂对沥青混合料的高温性能、水稳定性有一定的影响,对其低温性能的影响不显著;掺加旧沥青混合料,有利于提高Evotherm温拌沥青混合料高温稳定性能,而其低温弯曲性能则有显著降低;温拌再生沥青混合料的水稳定性能随着旧沥青混合料掺量增加呈现先增加后减小的趋势。  相似文献   

4.
研究了再生剂对旧沥青的作用机理及对再生沥青性能指标的影响,通过傅立叶红外光谱试验及再生沥青的组分试验,分析了再生剂在旧沥青中所起作用,提出再生沥青组分含量随再生剂掺量的非线性关系模型。根据不同再生剂掺量的再生沥青的布氏粘度、针入度、动态剪切流变试验结果,分析再生剂对旧沥青性能的改善效应,总结了再生剂掺量与各指标间的关系...  相似文献   

5.
沥青中掺入废胎胶粉可改善沥青的各项性能指标,并增强沥青混合料的高温稳定性和低温抗裂性。在基质沥青不变的条件下,随着废胎胶粉掺量的增加,橡胶沥青的旋转粘度、针入度、软化点、低温延度和弹性恢复增大,橡胶沥青混合料的动稳定度和低温破坏应变也相应增大。  相似文献   

6.
新沥青对再生沥青性能影响分析   总被引:1,自引:0,他引:1  
为了分析新沥青对再生沥青性能的影响规律,选取4种再生沥青与新沥青掺配成调和沥青,进行了大量沥青性能室内试验.分析结果表明:随着新沥青掺量的增加,调和沥青的针入度呈指数关系增加,软化点呈线性减少,布氏粘度呈指数关系下降,延度快速增大.当新沥青掺量达到60%时,其延度均超过100 cm,但新沥青对不同再生沥青的改善效果相差较大.其中,按照A-70#沥青的目标要求,C型调和沥青的再生剂和新沥青掺量最少,其性能稳定且旧沥青路面材料利用率高,适合于厂拌热再生,可应用于工程实际.  相似文献   

7.
为深入研究不同比例旧料掺量对沥青混合料路用性能的影响,通过对旧料沥青性能进行分析,确定再生剂最佳掺量,借助车辙试验、小梁弯曲试验、冻融劈裂试验对再生沥青混合料的路用性能进行系统研究,试验结果表明,温拌再生沥青混合料低温性能和水稳性能高于热拌再生沥青混合料;掺加旧料对温拌沥青混合料的动稳定度在一定程度上有所改善。  相似文献   

8.
为研究生物重油对老化沥青再生的可行性,选取3种生物重油进行试验。对3种生物重油进行比重、黏度、水分含量、元素分析、红外光谱等理化性能测试;将3种生物重油按照2%、4%、6%、8%的比例掺配至经室内模拟老化后的70#沥青中,通过针入度、延度、软化点、黏度试验,对比分析3种生物重油对70#老化沥青再生效果的差异性;参照沥青混合料最佳沥青用量的方法确定生物重油的最佳掺量。结果表明:随生物重油掺量的增加,老化沥青软化点和黏度呈下降趋势,针入度和延度呈上升趋势;生物重油再生性能存在一定的差异性,生物重油A和B再生性能较好,生物重油C再生性能稍差;生物重油A、B、C最佳掺量分别为3.9%、4.6%、6.4%。  相似文献   

9.
为统一橡胶沥青性能试验的评价指标,分别采用不同胶粉掺量对70#和90#的基质沥青进行改性,基于中国规范中的针入度、延度、软化点和弹性恢复试验以及Superpave中的动态剪切流变试验、布氏旋转粘度试验和弯曲梁流变试验等对橡胶沥青进行了性能评价。研究结果表明:胶粉的添加能显著改善沥青的高温性能,显著降低沥青的温度敏感性,但增大了沥青的高温粘度,增加了沥青混合料的拌和与压实难度;胶粉的溶胀作用会导致针入度的试验结果出现较大误差,因此,不建议采用针入度试验来评价橡胶沥青的性能;软化点可作为橡胶沥青高温性能的一个评价指标,对于90#基质沥青,胶粉掺量分别为10%、15%、20%和25%时的软化点比未掺胶粉时的软化点分别提高了11.23、11.97、15.18、21.10℃,对于70#基质沥青,胶粉的添加则使其软化点分别提高了4.02、8.18、12.83、14.45℃,因此,胶粉对70#基质沥青软化点的影响效果要大于对90#基质沥青的影响效果;胶粉对沥青低温性能的改善效果会随着温度的下降而降低,在研究胶粉对沥青低温性能的影响程度时,弯曲梁流变试验的结果比低温延度试验的结果更加明显,且由于橡胶沥青的低温延度较小,试验过程中容易产生较大误差,因此,建议采用弯曲梁流变试验评价橡胶沥青的低温性能。  相似文献   

10.
在沥青路面中添加炭黑以及自主研制的除冰剂可以减少沥青路面由于冻胀或温度应力产生的裂缝造成的路面磨损,对改性沥青性能进行针入度、软化点、延度和马歇尔试验等评定。结果表明,随着炭黑含量的增加,沥青的针入度和延度呈减小趋势,软化点稍有降低;当炭黑的含量为10%时,沥青的改性效果最好。当制备的除冰剂和炭黑复合加入到沥青中,沥青芯样有一定的防腐和防冻性能;改性后的沥青混合料稳定度和流值都增加,增加了沥青路面的耐磨性能。  相似文献   

11.
通过采用高温车辙试验、小梁弯曲试验、冻融劈裂试验以及4点梁疲劳试验方法,研究了旧沥青混合料掺量对再生沥青混合料各项路用性能的影响。研究表明:旧料的掺入可以有效提升混合料的动稳定度;旧料的掺入会导致混合料的低温抗裂性能、抗水损害性能以及抗疲劳性能逐渐下降;在保证再生沥青混合料路用性能满足规范要求的同时,综合对旧沥青混合料利用率最大化的考虑,确定了旧沥青混合料40%的较优掺量,并结合实际工程验证了该旧料掺量再生沥青混合料良好的路面应用效果及经济效益,研究成果可为废旧沥青混合料的再回收利用研究提供有益参考。  相似文献   

12.
基于室内试验测定了回收沥青面层材料中旧沥青、旧集料,新加沥青、新加集料及再生剂的各项性能指标;通过马歇尔试验确定了不同类型再生沥青混合料(AC-16C和AC-13)的最佳沥青用量。通过低温小梁弯曲试验和冻融劈裂试验,分析了不同旧料掺配比例、不同旧料类型、是否添加再生剂及二次老化前后混合料的低温抗裂性与水稳定性。结果表明:再生沥青混合料随旧料掺配比例的增加低温性能逐渐变差;短期水损害对其稳定性影响不大,但抵抗长期水损破坏的能力却大幅下降;旧料类型对再生沥青混合料性能的影响关联不大;添加7%~9%掺量的再生剂对其低温抗裂与水稳定性能的改善效果优于10%掺配比的再生混合料,基本接近新拌沥青混合料;二次老化后再生沥青混合料低温抗裂性能下降较快,虽仍可抵御短期水损害,但对其长期水稳定性影响较大,建议添加一定比例的再生剂。AC-13型再生沥青混合料抵抗低温开裂与水损破坏的能力相比于AC-16C型级配更强,更适合做上面层。  相似文献   

13.
把纳米TiO2作为紫外线吸收抗老化剂加入到沥青中,根据紫外线老化前后沥青针入度、软化点、延度的试验结果,分析纳米TiO2及其掺量对沥青抗紫外线老化能力的影响。结果表明:掺入纳米TiO2的沥青,其紫外线老化后的针入度、延度都有所增加,软化点明显减小;针入度指数的增加程度降低;针入度、延度、软化点损失率均明显降低;纳米TiO2的最佳掺量为1%。纳米TiO2作为紫外线吸收抗老化剂在一定程度上提高了沥青抗紫外线的能力。  相似文献   

14.
把纳米TiO2作为紫外线吸收抗老化剂加入到沥青中,根据紫外线老化前后沥青针入度、软化点、延度的试验结果,分析纳米TiO2及其掺量对沥青抗紫外线老化能力的影响。结果表明:掺入纳米TiO2的沥青,其紫外线老化后的针入度、延度都有所增加,软化点明显减小;针入度指数的增加程度降低;针入度、延度、软化点损失率均明显降低;纳米TiO2的最佳掺量为1%。纳米TiO2作为紫外线吸收抗老化剂在一定程度上提高了沥青抗紫外线的能力。  相似文献   

15.
天然沥青因长时间经历自然环境的影响,具有稳定的物理化学性质,良好的耐老化能力及温度敏感性。选取道路工程常用的90号基质沥青,分别对岩沥青(4%,8%和12%)和特立达湖沥青(20%,30%及40%)拟定三个掺量,采用熔融共混的方法制备天然沥青改性沥青。对天然沥青改性沥青的技术性能进行研究。选取AC-13沥青混合料,研究天然沥青对90号基质沥青混合料路用性能及力学性能的影响。研究结果表明,添加TLA和岩沥青后,90号基质沥青的针入度和延度减小,软化点和粘度增大;沥青混合料的动稳定度、RMS和TSR增大,沥青混合料的抗压强度及回弹模量均增大,表明TLA和岩沥青能够提高沥青混合料的抗车辙性能、水稳定性能以及路面结构的承载能力,且随着TLA和岩沥青掺量的增加,提高幅度更加显著。而低温弯曲试验结果表明,添加TLA和岩沥青后,沥青混合料的低温抗裂性能有所降低。但4%,8%和12%岩沥青掺量以及20%和30%TLA沥青掺量的改性沥青混合破坏应变仍满足冬寒区等级(≥2 300με)的要求。  相似文献   

16.
为了分析评价再生封层对原沥青路面老化沥青和沥青混合料的性能影响,针对S122省道预防性养护再生封层试验段进行了钻芯取样,并对回收沥青、试验段铣刨沥青混合料进行了相关试验。结果表明:再生封层材料在施工3个月后,可以渗透进入沥青路面内部3~4 cm,覆盖整个沥青路面上面层;再生封层材料渗透进入沥青路面内部后,可以有效恢复原路面老化沥青针入度、软化点和延度等指标,并融合成为原路面老化沥青的一部分,增加沥青含量,降低空隙率;再生封层可以不同程度改善原路面沥青混合料的低温抗裂性能、水稳定性能和疲劳性能,尽管高温稳定性与对比段相比略有下降,但仍显著优于新拌沥青混合料相关技术规范要求。  相似文献   

17.
旧沥青路面在车轮荷载作用下,承受着压应力、剪应力、拉应力等动静荷载,并且沥青路面长期暴露于自然,因此受到各种自然因素如氧、阳光、温度、水、风等自然力的作用,致使混合料中的沥青、骨料的性能发生物理、化学变化,沥青组分“移行”,即沥青质相应增加,从而导致沥青老化、粘度增加,而随着粘度的增长,沥青的针入度、延度及软化点也会发生有规律的变化,导致沥青性能下降,并最终表现为沥青混合料内沥青粘度增大、老化和集料的细化作用。如何使老化沥青恢复原有性能,即将老化沥青和原沥青的组分进行比较后,向老化沥青中加入所缺少的组分(即添加沥青再生剂),使组分重新协调(旧沥青的再生过程是老化过程的逆过程),从而达到旧沥青路面改造的目的,节约投资、材料,减少废旧沥青路面对环境的污染,热再生技术是一个很好的选择。  相似文献   

18.
为了给废旧沥青混合料的再生推荐再生剂的添加剂量,采用室内薄膜加热试验,来模拟道路石油沥青的老化,对比研究了6种再生剂用量分别对5种老化时间的老化道路石油沥青性能指标的影响。研究结果表明:再生剂对老化沥青的软化点和针入度指标的恢复,取得了良好的效果,但延度的恢复效果不明显,未能达到原样沥青的要求。此时为了达到良好的效果,在老化沥青加入在再生剂的同时,加入适量的同种新沥青,使得延度也能够得到良好的恢复。在工程应用中,可根据测得回收废旧沥青混合料中老化沥青的软化点和延度,与本文研究指标相对比,利用数值内插法来确定所测老化沥青的老化时间,并带入本文所得拟合公式,即可得到最佳再生剂用量。  相似文献   

19.
热再生沥青混合料低温抗裂性能全程评价   总被引:2,自引:0,他引:2  
为了评价热再生沥青混合料全寿命周期内的低温抗裂性能,以含有不同比例RAP的再生沥青混合料为研究对象,通过STOA和LTOA试验模拟混合料在不同使用阶段的老化,以极限应变和应变能密度为指标,采用低温弯曲试验对再生沥青混合料的低温抗裂性能进行了评价.试验结果表明:RAP 含量低于40% 的再生沥青混合料的低温抗裂性能与普通沥青混合料相当;受再生剂扩散作用的影响,STOA 后再生沥青混合料低温抗裂性能变化幅度较小,LTOA 过程中低温抗裂性能的变化规律与普通混合料相近;RAP 含量达 50% 时,再生沥青混合料老化前后的低温抗裂性能均较差.  相似文献   

20.
为了探究热再生沥青混合料的低温抗裂性,通过低温劈裂试验和小梁低温弯曲试验,研究了冻融循环次数对热再生沥青混合料老化前后劈裂抗拉强度、劈裂劲度模量、弯拉强度和弯拉应变等低温抗裂性指标的影响,并与新拌沥青混合料和旧沥青混合料作对比。试验结果表明,热再生沥青混合料和新沥青混合料的低温抗裂性指标都随冻融循环次数的增大逐渐减小。长期老化后,破坏拉伸应变的大小顺序是:旧沥青混合料热再生沥青混合料新沥青混合料,表明热再生使沥青混合料的低温抗裂性得到了一定的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号