首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The amount of time required to pick up and discharge passengers is an important issue in the planning and modeling of urban bus systems. Several past studies have employed models of this component of bus travel time which are based, in part, on a model of the number of stoppings the bus makes to pick up or discharge passengers. Most past versions of this model have assumed that expected demand does not vary from stop to stop or from trip to trip, but that the number of passengers demanding service at any given stop during any given trip follows a Poisson distribution. An alternative model is derived, based on the assumption that expected demand varies among stops and times of day but is fixed from day to day at any given stop and time of day. Boarding and alighting survey data are used to verify that the “average-demand” Poisson model consistently overestimates the number of stoppings and to calibrate an approximate version of the alternative model. A stop-spacing optimization model previously developed by Kikuchi and Vuchic is reevaluated using the alternative stopping model in place of the average demand model used in the original version. The results are found to be considerably different, thus indicating that transit route optimization models are sensitive to the way in which stopping processes are modeled.  相似文献   

2.
The capacity of the high‐speed train to compete against travel demand in private vehicles is analysed. A hypothetical context analysed as the high‐speed alternative is not yet available for the route studied. In order to model travel demand, experimental designs were applied to obtain stated preference information. Discrete choice logit models were estimated in order to derive the effect of service variables on journey utility. From these empirical demand models, it was possible to predict for different travel contexts and individuals the capacity of the high‐speed train to compete with the car, so determining the impact of the new alternative on modal distribution. Furthermore, individual willingness to pay for travel time saving is derived for different contexts. The results allow us to confirm that the high‐speed train will have a significant impact on the analysed market, with an important shift of passengers to the new rail service being expected. Different transport policy scenarios are derived. The cost of travel appears to a great extent to be a conditioning variable in the modal choice. These results provide additional evidence for the understanding of private vehicle travel demand.  相似文献   

3.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
First-best marginal cost toll for a traffic network with stochastic demand   总被引:1,自引:0,他引:1  
First-best marginal cost pricing (MCP) in traffic networks has been extensively studied with the assumption of deterministic travel demand. However, this assumption may not be realistic as a transportation network is exposed to various uncertainties. This paper investigates MCP in a traffic network under stochastic travel demand. Cases of both fixed and elastic demand are considered. In the fixed demand case, travel demand is represented as a random variable, whereas in the elastic demand case, a pre-specified random variable is introduced into the demand function. The paper also considers a set of assumptions of traveler behavior. In the first case, it is assumed that the traveler considers only the mean travel time in the route choice decision (risk-neutral behavior), and in the second, both the mean and the variance of travel time are introduced into the route choice model (risk-averse behavior). A closed-form formulation of the true marginal cost toll for the stochastic network (SN-MCP) is derived from the variational inequality conditions of the system optimum and user equilibrium assignments. The key finding is that the calculation of the SN-MCP model cannot be made by simply substituting related terms in the original MCP model by their expected values. The paper provides a general function of SN-MCP and derives the closed-form SN-MCP formulation for specific cases with lognormal and normal stochastic travel demand. Four numerical examples are explored to compare network performance under the SN-MCP and other toll regimes.  相似文献   

5.
This paper studies how link-specific speed limits influence the performance of degradable transport networks, in which the capacity of each link is a degradable random variable. The distribution and cumulative distribution of link travel time have been presented with the effect of speed limits taken into account. The mean and variance of link and route travel time are formulated. Three link states have been classified, and their physical meanings have been discussed. The relationship between critical capacity, travel time and speed limit has been elaborated. We have proposed a Speed Limit- and Reliability-based User Equilibrium (SLRUE), adopting travel time budget as the principle of travelers’ route choice. A heuristic method employing the method of successive averages is developed to solve the SLRUE in degradable networks. Through numerical studies, we find that for some networks both the mean and standard deviation of the total travel time could be reduced simultaneously by imposing some speed limits. The speed limit design problem has been studied, and it is found that imposing speed limits cannot always reduce the total travel time budget of a network.  相似文献   

6.
Day-to-day travel time variability plays a significant role in travel time reliability. Nowadays, travelers not only seek to minimize their travel time on average, but also value its variation. The variation in the mean and the variance of travel time (across days, for the same departure time) has not been thoroughly investigated. A temporary decrease in capacity (e.g. congestion caused by an active bottleneck) leads to a quite significant difference in the variance of travel time for congestion onset and offset periods. This phenomenon results in hysteresis loops where the departure time periods in congestion offset exhibit a higher travel time variance than the ones in congestion onset with the same mean travel time. The aim of this paper is to identify empirical implications that yield to the hysteresis phenomenon in day-to-day travel times. First, empirical hysteresis loop observations are provided from two different freeway sites. Second, we investigate the potential link with the hysteresis observed in traffic networks on macroscopic fundamental diagram (MFD). Third, we build a piecewise linear function that models the evolution of travel time within the day. This allows us to decompose the problem into its components, e.g. start time of congestion, peak travel time, etc. These components, along with their probability distribution functions, are employed in a Monte Carlo simulation model to investigate their partial effects on the existence of hysteresis. Correlation among critical variables is the most influential factor in this phenomenon, which should be further investigated regarding traffic flow and traffic equilibrium principles.  相似文献   

7.
This paper proposes a new scheduled-based transit assignment model. Unlike other schedule-based models in the literature, we consider supply uncertainties and assume that users adopt strategies to travel from their origins to their destinations. We present an analytical formulation to ensure that on-board passengers continuing to the next stop have priority and waiting passengers are loaded on a first-come-first-serve basis. We propose an analytical model that captures the stochastic nature of the transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse weather. We adopt a mean variance approach that can consider the covariance of travel time between links in a space–time graph but still lead to a robust transit network loading procedure when optimal strategies are adopted. The proposed model is formulated as a user equilibrium problem and solved by an MSA-type algorithm. Numerical results are reported to show the effects of supply uncertainties on the travel strategies and departure times of passengers.  相似文献   

8.
Zhong  Gang  Yin  Tingting  Zhang  Jian  He  Shanglu  Ran  Bin 《Transportation》2019,46(5):1713-1736

The travel behavior of passengers from the transportation hub within the city area is critical for travel demand analysis, security monitoring, and supporting traffic facilities designing. However, the traditional methods used to study the travel behavior of the passengers inside the city are time and labor consuming. The records of the cellular communication provide a potential huge data source for this study to follow the movement of passengers. This study focuses on the passengers’ travel behavior of the Hongqiao transportation hub in Shanghai, China, utilizing the mobile phone data. First, a systematic and novel method is presented to extract the trip information from the mobile phone data. Several key travel characteristics of passengers, including passengers traveling inside the city and between cities, are analyzed and compared. The results show that the proposed method is effective to obtain the travel trajectories of mobile phone users. Besides, the travel behavior of incity passengers and external passengers are quite different. Then, the correlation analysis of the passengers’ travel trajectories is provided to research the availability of the comprehensive area. Moreover, the results of the correlation analysis further indicate that the comprehensive area of the Hongqiao hub plays a relatively important role in passengers’ daily travel.

  相似文献   

9.
The paper presents valuing of qualitative and quantitative travel attributes influencing the attractiveness of suburban train service in Mumbai city, India. A stated preference experiment is designed to capture the data of sub-urban train mode choice behavior. The behavioral data are analyzed using different modeling techniques such as multinomial logit (MNL) and mixed logit (ML). In ML model, the random parameters are assumed to follow constrained triangular distribution, where mean equals its spread. The decomposition of preference heterogeneity around the mean estimate of random parameter is also investigated using ML model. The study shows the influence of headway time and train ride time associated with a particular crowding level (expressed in density of standing passengers/m2) in choosing the sub-urban train mode by calculating their willingness-to-pay (WTP) values and highlights the importance of WTP for addressing policy issues in the reduction of in-vehicle crowding level. The present study documents new findings of the effect of crowding level on train ride time in the context of a developing country and suggests some important directions for future suburban train transport crowding valuation research.  相似文献   

10.
This paper develops and applies a practical method to estimate the benefits of improved reliability of road networks. We present a general methodology to estimate the scheduling costs due to travel time variability for car travel. In contrast to existing practical methods, we explicitly consider the effect of travel time variability on departure time choices. We focus on situations when only mean delays are known, which is typically the case when standard transport models are used. We first show how travel time variability can be predicted from mean delays. We then estimate the scheduling costs of travellers, taking into account their optimal departure time choice given the estimated travel time variability. We illustrate the methodology for air passengers traveling by car to Amsterdam Schiphol Airport. We find that on average planned improvements in network reliability only lead to a small reduction in access costs per trip in absolute terms, mainly because most air passengers drive to the airport outside peak hours, when travel time variability tends to be low. However, in relative terms the reduction in access costs due to the improvements in network reliability is substantial. In our case we find that for every 1 Euro reduction in travel time costs, there is an additional cost reduction of 0.7 Euro due to lower travel time variability, and hence lower scheduling costs. Ignoring the benefits from improved reliability may therefore lead to a severe underestimation of the total benefits of infrastructure improvements.  相似文献   

11.
This paper investigates the sensitivity of demand for air travel by singleton passengers, couples, and families. It examines how the demand for air travel by these groups is potentially different. In this study, a compound Poisson structure of the demand of different passenger groups is considered, and aggregate demand observations and maximum likelihood procedures are used to decompound the processes and estimate demand sensitivity of each group of customers to price, time, season, and the economic cycle. The methodology is applied to Canadian market data and the results indicate there are significant differences among the different groups of customers.  相似文献   

12.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   

13.
Travel reliability can play an important role in shaping travelers’ route choice behavior. This paper develops a railway passenger assignment method to capture the reliability-based route choices, where the trains can have stochastic delays. The overall travel reliability has two components: the travel time reliability (of trains) and the associated transfer reliability (of connections). In this context, mean-and-variance-based effective travel cost is adopted to model passengers’ evaluation of different travel options in the railway network. Moreover, passengers are heterogeneous as they may evaluate the effective travel cost differently, and they may have different requirements for the successful transfer probability (if transfers are involved in the trip). The determination of travel time reliability (of trains) is based on the travel delay distribution, and the successful transfer probability is calculated based on the delay probabilities of two trains in the transfer process. An algorithm has been designed for solving the model, and numerical examples are presented to test and illustrate the model.  相似文献   

14.
This paper proposes a frequency-based assignment model that considers travellers probability of finding a seat in their perception of route cost and hence also their route choice. The model introduces a “fail-to-sit” probability at boarding points with travel costs based on the likelihood of travelling seated or standing. Priority rules are considered; in particular it is assumed that standing on-board passengers will occupy any available seats of alighting passengers before newly boarding passengers can fill any remaining seats. At the boarding point passengers are assumed to mingle, meaning that FIFO is not observed, as is the case for many crowded bus and metro stops, particularly in European countries. The route choice considers the common lines problem and an user equilibrium solution is sought through a Markov type network loading process and the method of successive averages. The model is first illustrated with a small example network before being applied to the inner zone of London’s underground network. The effect of different values passengers might attach to finding a seat are illustrated. Applications of the model for transit planning as well as for information provision at the journey planner stage are discussed.  相似文献   

15.
There are cases when passengers are willing to pay a premium to reduce the travel time, in particular when the trip has to be made. This paper aims to provide insight into factors that determine passengers’ willingness to pay to reduce travel time for their ground access to an airport. A methodology is developed that comprises two steps: the identification of the passengers with zero willingness to pay and from the rest the estimation of the additional price they are willing to pay to reduce their travel time. For the first step a Probit model was formulated and for the second a linear regression model. To this purpose, data has been collected employing stated preference from passengers at the Athens International Airport. It has been found that a high percentage of passengers have zero willingness to pay, and of the remaining ones those using public transport have a significant willingness to pay to reduce access travel time. The methodology and the models are structured in such a way that their transferability to any airport environment is possible, thus providing a useful tool for decisions relating to airport ground access measures.  相似文献   

16.
This paper formulates and examines the passenger flow assignment (itinerary choice) problem in high-speed railway (HSR) systems with multiple-class users and multiple-class seats, given the train schedules and time-varying travel demand. In particular, we take into account advance booking cost of travelers in the itinerary choice problem. Rather than a direct approach to model advance booking cost with an explicit cost function, we consider advance booking cost endogenously, which is determined as a part of the passenger choice equilibrium. We show that this equilibrium problem can be formulated as a linear programming (LP) model based on a three-dimension network representation of time, space, and seat class. At the equilibrium solution, a set of Lagrange multipliers for the LP model are obtained, which are associated with the rigid in-train passenger capacity constraints (limited numbers of seats). We found that the sum of the Lagrange multipliers along a path in the three-dimension network reflects the advance booking cost of tickets (due to advance/early booking to guarantee availability) perceived by the passengers. Numerical examples are presented to demonstrate and illustrate the proposed model for the passenger assignment problem.  相似文献   

17.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

18.
Many national governments around the world have turned their recent focus to monitoring the actual reliability of their road networks. In parallel there have been major research efforts aimed at developing modelling approaches for predicting the potential vulnerability of such networks, and in forecasting the future impact of any mitigating actions. In practice—whether monitoring the past or planning for the future—a confounding factor may arise, namely the potential for systematic growth in demand over a period of years. As this growth occurs the networks will operate in a regime closer to capacity, in which they are more sensitive to any variation in flow or capacity. Such growth will be partially an explanation for trends observed in historic data, and it will have an impact in forecasting too, where we can interpret this as implying that the networks are vulnerable to demand growth. This fact is not reflected in current vulnerability methods which focus almost exclusively on vulnerability to loss in capacity. In the paper, a simple, moment-based method is developed to separate out this effect of demand growth on the distribution of travel times on a network link, the aim being to develop a simple, tractable, analytic method for medium-term planning applications. Thus the impact of demand growth on the mean, variance and skewness in travel times may be isolated. For given critical changes in these summary measures, we are thus able to identify what (location-specific) level of demand growth would cause these critical values to be exceeded, and this level is referred to as Demand Growth Reliability Vulnerability (DGRV). Computing the DGRV index for each link of a network also allows the planner to identify the most vulnerable locations, in terms of their ability to accommodate growth in demand. Numerical examples are used to illustrate the principles and computation of the DGRV measure.  相似文献   

19.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general.  相似文献   

20.
A theoretical model for estimating the expectation and variance of buses' running times under a flexibly-routed mode of service is proposed. The model is based on a probabilistic concept that adequately accommodates the usual randomness in the number and location of passengers served during successive vehicle trips. A few simplifications are embodied in the model but it can serve as a basis for a more refined model such as a computer simulation model that can be used in designing real bus systems.The physical setting assumed in the model is a rectangular grid road network where all houses face the side streets as in some suburban regions. Because it oversimplifies real-life situations, this assumption would need to be relaxed to make the model applicable to more general cases.Both the partially flexible-route service where some passengers are captive to fixed-route service and others are served at their doorsteps, and the fully flexible-route service where all passengers are served at their doorsteps, are studied. In each case, a very simple routing convention that can be conveniently executed by the bus drivers is assumed. The proposed travel time model confirms the intuitively correct phenomenon that when the concentration of passenger trip-ends is very high, the vehicle-route degenerates into a fixed-route in which the buses visit all possible loading points within the service area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号