首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

2.
针对汽车直接横摆力矩控制,论文研究了基于自适应模糊PI的控制方法。设计了基于自适应模糊PI的附加横摆力矩决策控制器和基于规则分配的制动力分配器。横摆力矩决策控制器根据汽车横摆角速度期望值和车辆状态决策出所需的附加横摆力矩,通过规则制动力分配方法进行主动差动制动实现,并采用Matlab/Simulink与CarSim联合仿真对控制方法进行仿真试验验证。结果表明:基于自适应模糊PI的横摆力矩控制方法相对于未控制能够使汽车较好地跟踪期望,有效提高汽车操纵稳定性。  相似文献   

3.
《汽车工程》2021,43(4)
为提高分布式驱动电动智能汽车在自主循迹过程中关键参数的估计精度并降低模型不确定性对控制系统鲁棒性的影响,本文中提出了一种基于观测器的自适应滑模路径跟踪控制策略。首先,针对难以直接精确测量的车辆纵、侧向速度,建立了5输入3输出3状态的状态估计系统,并采用最小模型误差准则以降低估计过程轮胎的非线性特性带来的观测模型误差。接着,基于运动学模型,计算出了路径跟踪期望横摆角速度响应,并采用自适应滑模算法实现主动转向控制。考虑线控转向系统的潜在失效风险,引入径向基神经网络对系统不确定性进行在线估计。同时,设计了直接横摆稳定控制器并采用最优转矩分配策略,进一步提高车辆的稳定性。最后,对车辆状态估计和路径跟踪进行了Carsim/Matlab联合仿真,结果表明:基于最小模型误差准则的观测器能取得较可靠的估计结果,路径跟踪控制器能保证车辆具有较好的跟踪精度和鲁棒性。  相似文献   

4.
四轮独立转向-独立驱动电动车(4WIS-4WID EV)具有低速机动性强、高速稳定性好的特点,是一种理想的智能车构型。本文中针对4WIS-4WID EV进行了主动避障系统的设计,主要包括避障路径规划和跟踪控制。首先基于车辆运动学模型,提出了采用七次多项式的避障路径规划算法;然后基于简化2自由度车辆动力学模型,设计了模型预测路径跟踪控制器;为提高车辆主动避障过程中的操纵稳定性,路径跟踪控制算法采用四轮转向与直接横摆力矩控制技术。通过不同附着系数路面工况与侧风扰动工况仿真,验证了所设计的主动避障系统具有良好的避障能力和鲁棒性。  相似文献   

5.
詹伟梁  董洪昭 《时代汽车》2023,(22):186-188
四轮独立转向驱动汽车相比传统车辆具有更多控制自由度,具备在高曲率跟踪精度好,低附着路面操纵稳定性优越的特点。本文针对车辆在轨迹跟踪中所面对的低附着、爆胎等紧急工况,本研究采用模型预测控制理论,针对四轮转向电动汽车的横摆稳定性问题进行了探究。以横摆角速度和横向误差为控制目标,计算出最优四轮转角和直接横摆力矩,下层采用最优转矩分配并考虑轮胎摩擦圆约束,以实现对四轮驱动电动汽车的稳定性控制。在CarSim/Simulink联合仿真整车模型中,采用参数化建模设置整车参数。通过双移线爆胎工况仿真实验分析,所提出的策略能够有效地提高四轮驱动电动汽车的轨迹跟踪精度,从而提高整车的行驶稳定性。  相似文献   

6.
本文研究通过直接横摆力矩控制来提高分布式驱动电动汽车稳定性问题。针对充分发挥四轮独立驱动电动汽车各电机独立可控的特点来提高车辆稳定性的问题,提出了基于滑模变结构控制原理的车辆稳定性分层控制策略。其中,以横摆角速度和质心侧偏角为控制变量,设计了上层附加横摆力矩层。考虑地面附着条件和电机外特性约束,设计了下层动态转矩分配层。通过Simulink与Carsim联合仿真表明,所设计控制策略提高了车辆的稳态行驶能力,增强了车辆的横向稳定性,控制策略行之有效。  相似文献   

7.
路径跟随是依照规划轨迹信息通过对执行元件的控制实现沿期望轨迹行驶,控制算法对实现路径跟随非常重要。针对自动驾驶车辆的侧向控制技术,文章研究了基于最优预瞄理论的路径跟随控制,建立车辆二自由度模型和预瞄误差模型,设计模型预测控制(MPC)侧向跟随控制器以提高跟随精度。利用CarSim-Simulink联合仿真,仿真结果表明,该算法策略能稳定跟踪规划路径。  相似文献   

8.
《汽车工程》2021,43(8)
现有的铰接车辆路径跟踪控制方法在模型线性化和预瞄误差过程均产生较大误差,导致跟踪精度降低。针对铰接车辆路径跟踪控制,构建了铰接车辆动力学模型,采用基于状态轨迹的线性化方法补偿动力学误差,提出了考虑路径多点预瞄误差的控制目标,设计了基于动力学模型的模型预测控制器,用以优化铰接点处转向力矩。为验证该方法的有效性,采用Matlab/Simulink和Adams软件构建了联合仿真平台,对控制算法进行了仿真验证。仿真结果表明,本文中设计的控制器可有效提升铰接车辆路径跟踪精度。  相似文献   

9.
针对车辆状态参数估计过程中过程噪声和测量噪声的不确定性,提出一种基于自适应无迹卡尔曼滤波的车辆状态参数估计算法.建立包括纵向、横向和横摆3个自由度的车辆动力学模型,基于无迹卡尔曼滤波理论建立自适应无迹卡尔曼滤波估计模型,最后搭建MATLAB/Simu-link-Carsim联合仿真平台对提出的算法进行仿真验证.结果表明...  相似文献   

10.
针对无人驾驶车辆在极限工况下跟踪控制精度和稳定性均难以保障的问题,提出一种纵横向稳定性综合协调控制方法。首先对无人驾驶车辆在摩擦极限下的速度进行规划,通过纵向加速度前馈和状态反馈控制器实现极限车速下的速度跟随。其次将预瞄前馈与人工势场反馈相结合设计了横向路径跟踪控制器。提出了基于期望与实际横摆角速度偏差的稳定性控制策略,优化纵向控制的驱动力矩。Simulink/Carsim联合仿真结果表明,所提出的纵横向协调稳定控制方法可在极限工况下改善无人驾驶车辆瞬态响应,抑制道路曲率突变处的超调量,减少路径跟随中的稳态误差,提高了无人驾驶车辆的轨迹跟踪精度和弯道运动过程中的横向稳定性。  相似文献   

11.
由于车辆在低附着工况(如积雪、潮湿)下跟踪性与横向稳定性的耦合关系,这使得二者之间的控制难以同时满足跟踪精度及良好的稳定性需求,因此,研究了基于分布式独立驱动电动汽车平台的路径跟踪与横向稳定性联合控制模型。对于路径跟踪问题,采用了横纵向解耦控制;对于横向跟踪控制问题,模型采用基于Frenet坐标系的模型预测控制(model predictive control,MPC)路径跟踪控制方法,并引入了转角补偿策略以提升路径跟踪的准确性;对于纵向车速控制问题,模型利用MPC求解期望加速度,并根据行驶平衡方程和保证路面附着最大利用率的条件下确定电机扭矩输出,实现对纵向车速的控制。对于横向稳定性控制问题,提出了基于稳定性增强系统(stability augmentation system,STA)的横摆力矩控制模型,在获得附加力矩后,以二次规划方法将其合理分配到各个车轮上,从而增强了车辆的横向稳定性。最后,通过CarSim/Simulink联合仿真平台,在双移线道路工况下进行了仿真验证。结果表明:在积雪路面,改进模型相比传统MPC在保证横向误差接近的条件下,最大的质心侧偏角降低了83.1%;在潮湿...  相似文献   

12.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。  相似文献   

13.
针对无人车路径跟踪过程中跟踪效果与车辆稳定性这一多目标控制问题,基于分层控制理论提出了一种分布式驱动无人车辆路径跟踪与稳定性协调控制策略。建立了车辆动力学模型和路径跟踪模型,利用滑模控制方法设计了上层控制器,旨在减小路径跟踪过程中的航向偏差和横向偏差的同时确保车辆自身的稳定性。在下层控制器中,设计了一种四轮轮胎力优化分配方法,根据上层控制器需求,结合车辆横摆与侧倾稳定性情况,实现四轮轮胎力的定向控制分配。基于CarSim和Simulink搭建了联合仿真模型并进行仿真实验,结果表明,提出的协调控制策略能够有效地控制车辆路径跟踪中的航向偏差和横向偏差,同时确保车辆的侧倾与横向稳定性。  相似文献   

14.
罗昶 《汽车工程》2005,27(2):164-167
提出一种应用隐模型跟踪最优二次型调节器的车辆动力学控制方法,为多电机独立驱动电动车设计了直接横摆力偶矩控制器,通过仿真计算证明了该控制方法的有效性。  相似文献   

15.
《汽车工程》2021,43(9)
为了提高多轮分布式电驱动车辆在复杂机动环境下的转向能力,设计了一种基于直接横摆力矩控制的双重转向系统。该控制系统采用分层结构,上层为横摆力矩决策层,下层为驱动力分配层。在控制系统上层,基于无迹卡尔曼滤波和递归最小二乘结合算法进行路面辨识;根据车辆状态信息和路面条件自适应调节滑移转向比,由车辆动力学模型和滑移转向比确定双重转向参考模型;针对滑模面附近非连续特性造成的控制信号抖动现象,将滑模控制算法进行改进,设计了滑模条件积分控制器,使车辆实际横摆角速度追踪双重转向参考模型计算出期望横摆角速度。系统下层在保证车辆总驱动力的前提下,基于控制分配规则将上层广义目标控制力需求分配至各执行器。最后,利用硬件在环实时仿真平台进行控制策略验证。结果表明,分层控制系统较好地实现了路面识别功能和车辆双重转向功能,针对不同路面工况对车辆进行了有效地行驶控制,减小了车辆在狭小弯曲地区的转弯半径,抑制了车辆状态参数及电机转矩的颤振和抖动,改善了车辆小半径行驶的转向机动性和高速行驶稳定性。  相似文献   

16.
基于线性矩阵不等式方法,设计了一种集成后轮主动转向、纵向驱动力补偿和直接横摆力矩控制的底盘集成控制系统,叫底盘鲁棒模型匹配集成控制器(R-MMC).为全面验证底盘集成控制器对车辆操纵性能的提高,建立了基于参考向量场的驾驶员模型,并用它和R-MMC组成一个包含内、外两个环路的人-车闭环控制系统.通过驾驶员模型不参与控制下的非稳态侧风干扰试验和驾驶员模型参与控制的人-车闭环系统S弯道跟踪试验,验证了R-MMC不但能显著提高车辆的操纵稳定性和主动安全性,而且还可增强车辆的路径跟踪能力,降低驾驶员的劳动强度.  相似文献   

17.
对于四轮转向汽车,基于2自由度线性车辆模型设计了用于路径自动跟踪的最优控制算法.在Matlab/Simulink中以2自由度非线性车辆模型作为被控对象对控制算法进行仿真评价,仿真模型中对最优控制算法所确定的前、后轮转角分别施加一个惯性环节.双移线和蛇行工况下的仿真结果表明,路径和横摆角速度跟踪效果好,质心侧偏角得到有效抑制.该最优控制算法实现了四轮转向车辆的低速反相转向和高速同相转向.  相似文献   

18.
首先介绍了目前车辆动力学稳定性控制的研究现状.提出了基于联合仿真平台进行控制仿真研究的新思路;其次详细分析了车辆动力学稳定性控制的原理。应用直接横摆力矩状态反馈控制策略,基于ADAMS/Car和Matlab/simulink的联合仿真技术.采用阶跃转向和单移线仿真工况有效验证了该控制策略的正确性,提高车辆在危险工况下的稳定性和可控性,为实际设计车辆动力学稳定性控制系统提供了理论基础。  相似文献   

19.
为解决利用车辆机理模型设计控制器时的自适应问题,针对非线性车辆动力学系统,提出一种基于数据驱动的横向稳定性控制策略。利用递推子空间模型辨识算法设计预测器,根据预测器的形式并结合车辆横向稳定性控制提出一种具有模型自适应特性的预测控制器。利用MATLAB/Simulink建立7自由度整车动力学仿真模型,结合国际标准ISO/DIS 7401:2000以及ISO 3888:1999进行实车道路试验,并对仿真模型进行了数值验证,基于整车动力学模型,对自适应预测控制器的控制效果进行了数值仿真验证,证明了算法的有效性和鲁棒性。  相似文献   

20.
针对车辆路径跟踪模型预测控制(MPC)的动力学非线性问题和实时性要求,引入基于非线性预测和沿轨迹线性化的模型预测控制算法(MPC-NPLT),依据上一控制周期得到的控制序列预估系统未来的运动轨迹,将非线性因素从在线优化计算中排除,使其转化为二次规划问题;制定直接横摆力矩控制系统的切换策略和制动力分配策略,实现其与转向系...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号