首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study proposes a formulation of the within-day dynamic stochastic traffic assignment problem. Considering the stochastic nature of route choice behavior, we treat the solution to the assignment problem as the conditional joint distribution of route traffic, given that the network is in dynamic stochastic user equilibrium. We acquire the conditional joint probability distribution using Bayes’ theorem. A Metropolis–Hastings sampling scheme is developed to estimate the characteristics (e.g., mean and variance) of the route traffic. The proposed formulation has no special requirements for the traffic flow models and user behavior models, and so is easily implemented.  相似文献   

2.
In this paper, a dynamic user equilibrium traffic assignment model with simultaneous departure time/route choices and elastic demands is formulated as an arc-based nonlinear complementarity problem on congested traffic networks. The four objectives of this paper are (1) to develop an arc-based formulation which obviates the use of path-specific variables, (2) to establish existence of a dynamic user equilibrium solution to the model using Brouwer's fixed-point theorem, (3) to show that the vectors of total arc inflows and associated minimum unit travel costs are unique by imposing strict monotonicity conditions on the arc travel cost and demand functions along with a smoothness condition on the equilibria, and (4) to develop a heuristic algorithm that requires neither a path enumeration nor a storage of path-specific flow and cost information. Computational results are presented for a simple test network with 4 arcs, 3 nodes, and 2 origin–destination pairs over the time interval of 120 periods.  相似文献   

3.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
Consider a city with several highly compact central business districts (CBD), and the commuters’ destinations from each of them are dispersed over the whole city. Since at a particular location inside the city the traffic movements from different CBDs share the same space and do not cancel out each other as in conventional fluid flow problems albeit travelling in different directions, the traffic flows from a CBD to the destinations over the city are considered as one commodity. The interaction of the traffic flows among different commodities is governed by a cost–flow relationship. The case of variable demand is considered. The primal formulation of the continuum equilibrium model is given and proved to satisfy the user optimal conditions, and the dual formulation of the problem and its complementary conditions are also discussed. A finite element method is then employed to solve the continuum problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
For the planning and design of walking infrastructure, characterized by the fact that the pedestrians can choose their paths freely in two‐dimensional space, applicability of traditional discrete network models is limited. This contribution puts forward an approach for user‐optimal dynamic assignment in continuous time and space for analyzing for instance walking infrastructure in a two‐dimensional space. Contrary to network‐based approaches, the theory allows the traffic units to choose from an infinite non‐countable set of paths through the considered space. The approach first determines the continuous paths using a path choice model. Then, origin‐destination flows are assigned and traffic conditions are calculated. The approach to determine a user‐optimal assignment is heuristic and consists of a sequence of all‐or‐nothing assignments. An application example is presented, showing dynamic user equilibrium traffic flows through a realistic transfer station. The example is aimed at illustrating the dynamic aspects of the modeling approach, such as anticipation on expected flow conditions, and predicted behavior upon catching or missing a connection.  相似文献   

6.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme.  相似文献   

7.
A network optimization problem is formulated which yields a probabilistic equilibrated traffic assignment incorporating congestion effects and which as a special case, reduces to a user optimized equilibrium solution. In the resulting model, path choice is determined by a logit formula in which path costs are functions of the assigned flows. The article also demonstrates the similarity between some fixed demand incremental methods of traffic assignment and the minimization problem associated with computing the user equilibrium assignment.  相似文献   

8.
The integration of activity-based modeling and dynamic traffic assignment for travel demand analysis has recently attracted ever-increasing attention. However, related studies have limitations either on the integration structure or the number of choice facets being captured. This paper proposes a formulation of dynamic activity-travel assignment (DATA) in the framework of multi-state supernetworks, in which any path through a personalized supernetwork represents a particular activity-travel pattern (ATP) at a high level of spatial and temporal detail. DATA is formulated as a discrete-time dynamic user equilibrium (DUE) problem, which is reformulated as an equivalent variational inequality (VI) problem. A generalized dynamic link disutility function is established with the accommodation of different characteristics of the links in the supernetworks. Flow constraints and non-uniqueness of equilibria are also investigated. In the proposed formulation, the choices of departure time, route, mode, activity sequence, activity and parking location are all unified into one time-dependent ATP choice. As a result, the interdependences among all these choice facets can be readily captured. A solution algorithm based on the route-swapping mechanism is adopted to find the user equilibrium. A numerical example with simulated scenarios is provided to demonstrate the advantages of the proposed approach.  相似文献   

9.
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   

10.
This paper explores the effects of queue spillover in transportation networks, in the context of dynamic traffic assignment. A model of spatial queue is defined to characterize dynamic traffic flow and queuing formation in network links. Network users simultaneously choose departure time and travel route to minimize the travel cost including journey time and unpunctuality penalty. Using some necessary conditions of the dynamic user equilibrium, dynamic network flows are obtained exactly on some networks with typical structure. Various effects of queue spillover are discussed based on the results of these networks, and some new paradoxes of link capacity expansion have been found as a result of such effects. Analytical and exact results in these typical networks show that ignoring queuing length may generate biased solutions, and the link storage capacity is a very important factor concerning the performance of networks.  相似文献   

11.
This study models the joint evolution (over calendar time) of travelers’ departure time and mode choices, and the resulting traffic dynamics in a bi-modal transportation system. Specifically, we consider that, when adjusting their departure time and mode choices, travelers can learn from their past travel experiences as well as the traffic forecasts offered by the smart transport information provider/agency. At the same time, the transport agency can learn from historical data in updating traffic forecast from day to day. In other words, this study explicitly models and analyzes the dynamic interactions between transport users and traffic information provider. Besides, the impact of user inertia is taken into account in modeling the traffic dynamics. When exploring the convergence of the proposed model to the dynamic bi-modal commuting equilibrium, we find that appropriate traffic forecast can help the system converge to the user equilibrium. It is also found that user inertia might slow down the convergence speed of the day-to-day evolution model. Extensive sensitivity analysis is conducted to account for the impacts of inaccurate parameters adopted by the transport agency.  相似文献   

12.
In this paper, we address the discrete network design problem, which determines the addition of new roads to existing transportation network to optimize the transportation system performance. Road users are assumed to follow the traffic assignment principle of stochastic user equilibrium. A mixed‐integer nonlinear nonconvex problem is developed to model this discrete network design problem with stochastic user equilibrium. The original problem is relaxed into a convex mixed‐integer nonlinear program, whose solution provides a lower bound of the original problem. The relaxed problem is then embedded into two proposed global optimization solution algorithms to obtain the global optimal solution of the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of the paper is to evaluate the performance of a new strategy which is able to control dynamic route guidance (DRG) systems, mainly in urban road networks. The purpose of this strategy is to achieve dynamic user equilibrium in the network, even in abnormal network conditions, for example when there is an unexpected increase in traffic volume. It is based on feedback concept and it reacts to the traffic conditions observed in real time by adopting a decentralized structure.A series of experiments was performed, by means of a traffic micro-simulator, in a section of an urban road network. In the situations examined, the results seem to be quite positive. The analyses of the link level show that all of the various travel alternatives to reach the destination become more advantageous for users if DRG devices become more widespread among vehicles. In some cases we observe that the strategy succeeds in maintaining the possible alternatives in equilibrium conditions, by distributing users among the feasible turns. At no point in our investigations do we observe an unstable behaviour of the system, even when the number of vehicles fitted with a DRG device increases.  相似文献   

14.
Intelligent transport systems provide various means to improve traffic congestion in road networks. Evaluation of the benefits of these improvements requires consideration of commuters’ response to reliability and/or uncertainty of travel time under various circumstances. Various disruptions cause recurrent or non-recurrent congestion on road networks, which make road travel times intrinsically fluctuating and unpredictable. Confronted with such uncertain traffic conditions, commuters are known to develop some simple decision-making process to adjust their travel choices. This paper represents the decision-making process involved in departure-time and route choices as risk-taking behavior under uncertainty. An expected travel disutility function associated with commuters’ departure-time and route choices is formulated with taking into account the travel delay (due the recurrent congestion), the uncertainty of travel times (due to incident-induced congestion) and the consequent early or late arrival penalty. Commuters are assumed to make decision on the departure-time and route choices on the basis of the minimal expected travel disutility. Thus the network will achieve a simultaneous route and departure-time user equilibrium, in which no commuter can decrease his or her expected disutility by unilaterally changing the route or departure-time. The equilibrium is further formulated as an equivalent nonlinear complementarity problem and is then converted into an unconstrained minimization problem with the use of a gap function suggested recently. Two algorithms based on the Nelder–Mead multidimensional simplex method and the heuristic route/time-swapping approach, are adapted to solve the problem. Finally, numerical example is given to illustrate the application of the proposed model and algorithms.  相似文献   

15.
This study investigates a travelers’ day-to-day route flow evolution process under a predefined market penetration of advanced traveler information system (ATIS). It is assumed that some travelers equipped with ATIS will follow the deterministic user equilibrium route choice behavior due to the complete traffic information provided by ATIS, while the other travelers unequipped with ATIS will follow the stochastic user equilibrium route choice behavior. The interaction between these two groups of travelers will result in a mixed equilibrium state. We first propose a discrete day-to-day route flow adjustment process for this mixed equilibrium behavior by specifying the travelers’ route adjustment principle and adjustment ratio. The convergence of the proposed day-to-day flow dynamic model to the mixed equilibrium state is then rigorously demonstrated under certain assumptions upon route adjustment principle and adjustment ratio. In addition, without affecting the convergence of the proposed day-to-day flow dynamic model, the assumption concerning the adjustment ratio is further relaxed, thus making the proposed model more appealing in practice. Finally, numerical experiments are conducted to illustrate and evaluate the performance of the proposed day-to-day flow dynamic model.  相似文献   

16.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

17.
Several route choice models are reviewed in the context of the stochastic user equilibrium problem. The traffic assignment problem has been extensively studied in the literature. Several models were developed focusing mainly on the solution of the link flow pattern for congested urban areas. The behavioural assumption governing route choice, which is the essential part of any traffic assignment model, received relatively much less attention. The core of any traffic assignment method is the route choice model. In the wellknown deterministic case, a simple choice model is assumed in which drivers choose their best route. The assumption of perfect knowledge of travel costs has been long considered inadequate to explain travel behaviour. Consequently, probabilistic route choice models were developed in which drivers were assumed to minimize their perceived costs given a set of routes. The objective of the paper is to review the different route choice models used to solve the traffic assignment problem. Focus is on the different model structures. The paper connects some of the route choice models proposed long ago, such as the logit and probit models, with recently developed models. It discusses several extensions to the simple logit model, as well as the choice set generation problem and the incorporation of the models in the assignment problem.  相似文献   

18.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method.  相似文献   

19.
In this paper, we propose a link-node complementarity model for the basic deterministic dynamic user equilibrium (DUE) problem with single-user-class and fixed demands. The model complements link-path formulations that have been widely studied for dynamic user equilibria. Under various dynamic network constraints, especially the exact flow propagation constraints, we show that the continuous-time dynamic user equilibrium problem can be formulated as an infinite dimensional mixed complementarity model. The continuous-time model can be further discretized as a finite dimensional non-linear complementarity problem (NCP). The proposed discrete-time model captures the exact flow propagation constraints that were usually approximated in previous studies. By associating link inflow at the beginning of a time interval to travel times at the end of the interval, the resulting discrete-time model is predictive rather than reactive. The solution existence and compactness condition for the proposed model is established under mild assumptions. The model is solved by an iterative algorithm with a relaxed NCP solved at each iteration. Numerical examples are provided to illustrate the proposed model and solution approach. We particularly show why predictive DUE is preferable to reactive DUE from an algorithmic perspective.  相似文献   

20.
This paper presents a reliability‐based network design problem. A network reliability concept is embedded into the continuous network design problem in which travelers' route choice behavior follows the stochastic user equilibrium assumption. A new capacity‐reliability index is introduced to measure the probability that all of the network links are operated below their capacities when serving different traffic patterns deviating from the average condition. The reliability‐based network design problem is formulated as a bi‐level program in which the lower level sub‐program is the probit‐based stochastic user equilibrium problem and the upper level sub‐program is the maximization of the new capacity reliability index. The lower level sub‐program is solved by a variant of the method of successive averages using the exponential average to represent the learning process of network users on a daily basis that results in the daily variation of traffic‐flow pattern, and Monte Carlo stochastic loading. The upper level sub‐program is tackled by means of genetic algorithms. A numerical example is used to demonstrate the concept of the proposed framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号