共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method. 相似文献
2.
The similarity between link flows obtained from deterministic and stochastic equilibrium traffic assignment models is investigated at different levels of congestion. A probit-based stochastic assignment is used (over a congested network) where the conditions for equilibrium are those given by Daganzo and Sheffi (1977). Stochastic equilibrium flows are generated using an iterative procedure with predetermined step sizes, and the resulting assignment is validated on the basis of the equilibrium criteria. The procedure is intended to assist in the choice of the most appropriate assignment algorithm for a given level of congestion. 相似文献
3.
This research addresses the eco-system optimal dynamic traffic assignment (ESODTA) problem which aims to find system optimal eco-routing or green routing flows that minimize total vehicular emission in a congested network. We propose a generic agent-based ESODTA model and a simplified queueing model (SQM) that is able to clearly distinguish vehicles’ speed in free-flow and congested conditions for multi-scale emission analysis, and facilitates analyzing the relationship between link emission and delay. Based on the SQM, an expanded space-time network is constructed to formulate the ESODTA with constant bottleneck discharge capacities. The resulting integer linear model of the ESODTA is solved by a Lagrangian relaxation-based algorithm. For the simulation-based ESODTA, we present the column-generation-based heuristic, which requires link and path marginal emissions in the embedded time-dependent least-cost path algorithm and the gradient-projection-based descent direction method. We derive a formula of marginal emission which encompasses the marginal travel time as a special case, and develop an algorithm for evaluating path marginal emissions in a congested network. Numerical experiments are conducted to demonstrate that the proposed algorithm is able to effectively obtain coordinated route flows that minimize the system-wide vehicular emission for large-scale networks. 相似文献
4.
Hai Yang Tsuna Sasaki Yasunori Iida Yasuo Asakura 《Transportation Research Part B: Methodological》1992,26(6)
Conventional methods for estimating origin-destination (O-D) trip matrices from link traffic counts assume that route choice proportions are given constants. In a network with realistic congestion levels, this assumption does not hold. This paper shows how existing methods such as the generalized least squares technique can be integrated with an equilibrium traffic assignment in the form of a convex bilevel optimization problem. The presence of measurement errors and time variations in the observed link flows are explicitly considered. The feasibility of the model is always guaranteed without a requirement for estimating consistent link flows from counts. A solution algorithm is provided and numerical simulation experiments are implemented in investigating the model's properties. Some related problems concerning O-D matrix estimation are also discussed. 相似文献
5.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method. 相似文献
6.
Stphane Lafortune Raja SenguptaDavid E. Kaufman Robert L. Smith 《Transportation Research Part B: Methodological》1993,27(6)
We propose a new mathematical formulation for the problem of optimal traffic assignment in dynamic networks with multiple origins and destinations. This problem is motivated by route guidance issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. We assume that the network is subject to known time-varying demands for travel between its origins and destinations during a given time horizon. The objective is to assign the vehicles to links over time so as to minimize the total travel time experienced by all the vehicles using the network. We model the traffic network over the time horizon as a discrete-time dynamical system. The system state at each time instant is defined in a way that, without loss of optimality, avoids complete microscopic detail by grouping vehicles into platoons irrespective of origin node and time of entry to network. Moreover, the formulation contains no explicit path enumeration. The state transition function can model link travel times by either impedance functions, link outflow functions, or by a combination of both. Two versions (with different boundary conditions) of the problem of optimal traffic assignment are studied in the context of this model. These optimization problems are optimal control problems for nonlinear discrete-time dynamical systems, and thus they are amenable to algorithmic solutions based on dynamic programming. The computational challenges associated with the exact solution of these problems are discussed and some heuristics are proposed. 相似文献
7.
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System. 相似文献
8.
Xinkai WuHenry X. Liu 《Transportation Research Part B: Methodological》2011,45(10):1768-1786
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization. 相似文献
9.
Robert G.V. Baker 《Transportation Research Part B: Methodological》1981,15(5):319-327
The study of traffic flow dynamics is developed by defining and clarifying traffic divergence, continuity, congestion and dispersion. Velocity potential is introduced as a gravity function generated by the interaction of two or more motorists occupying neighbouring points in space and describes interference to continuous traffic flow. The relationship between the potential function and carrying capacity is developed and dispersion, when considered as a random walk, satisfies a diffusion equation. A model of traffic dispersion along a maximum congested road in space and time is presented as eigenfunctions of the velocity potential. This suggests that traffic can be dispersed by a series of quantum steps. A probability density function is introduced to define the probability of locating a motorist in a congestion zone. 相似文献
10.
We propose a quantitative approach for calibrating and validating key features of traffic instabilities based on speed time series obtained from aggregated data of a series of neighboring stationary detectors. The approach can be used to validate models that are calibrated by other criteria with respect to their collective dynamics. We apply the proposed criteria to historic traffic databases of several freeways in Germany containing about 400 occurrences of congestions thereby providing a reference for model calibration and quality assessment with respect to the spatiotemporal dynamics. First tests with microscopic and macroscopic models indicate that the criteria are both robust and discriminative, i.e., clearly distinguishes between models of higher and lower predictive power. 相似文献
11.
Mike Maher 《Transportation Research Part B: Methodological》1998,32(8):539-549
The paper proposes an efficient algorithm for determining the stochastic user equilibrium solution for logit-based loading. The commonly used Method of Successive Averages typically has a very slow convergence rate. The new algorithm described here uses Williams’ result [ Williams, (1977) On the formation of travel demand models and economic evaluation measures of user benefit. Environment and Planning 9A(3), 285–344] which enables the expected value of the perceived travel costs Srs to be readily calculated for any flow vector x. This enables the value of the Sheffi and Powell, 1982 objective function [Sheffi, Y. and Powell, W. B. (1982) An algorithm for the equilibrium assignment problem with random link times. Networks 12(2), 191–207], and its gradient in any specified search direction, to be calculated. It is then shown how, at each iteration, an optimal step length along the search direction can be easily estimated, rather than using the pre-set step lengths, thus giving much faster convergence. The basic algorithm uses the standard search direction (towards the auxiliary solution). In addition the performance of two further versions of the algorithm are investigated, both of which use an optimal step length but alternative search directions, based on the Davidon–Fletcher–Powell function minimisation method. The first is an unconstrained and the second a constrained version. Comparisons are made of all three versions of the algorithm, using a number of test networks ranging from a simple three-link network to one with almost 3000 links. It is found that for all but the smallest network the version using the standard search direction gives the fastest rate of convergence. Extensions to allow for multiple user classes and elastic demand are also possible. 相似文献
12.
Caroline Fisk 《Transportation Research Part B: Methodological》1980,14(3):243-255
A network optimization problem is formulated which yields a probabilistic equilibrated traffic assignment incorporating congestion effects and which as a special case, reduces to a user optimized equilibrium solution. In the resulting model, path choice is determined by a logit formula in which path costs are functions of the assigned flows. The article also demonstrates the similarity between some fixed demand incremental methods of traffic assignment and the minimization problem associated with computing the user equilibrium assignment. 相似文献
13.
《Transportation Research Part A: Policy and Practice》2007,41(7):644-654
The classical road-tolling problem is to toll network links such that under the principles of Wardropian User Equilibrium Assignment a System Optimising (SO) flow pattern is obtained. Stochastic assignment methods are accepted to be more realistic than deterministic and it is of interest to examine the potential for optimal tolling in the case of Stochastic User Equilibrium (SUE). In examining the case of Stochastic User Equilibrium the ‘desired flow pattern’ to be created must first be determined. The classical economics solution of replacing unit-cost flow functions with marginal-cost flow functions which under deterministic assignment produces the System Optimal solution (where Total Network Travel Cost (TNTC) is minimised) does not generally result in TNTC being minimised in the Stochastic Case. Instead such tolls produce a ‘Stochastic System Optimal’ (SSO) solution where the Total Perceived Network Travel Cost (TPNTC) is minimised.This paper examines and compares link-based tolling solutions to achieve both the SSO (TPNTC minimised) and true SO (TNTC minimised) under SUE and illustrates the concept with numerical examples. Such link-based tolling schemes produce network benefit by re-routing rather than traffic suppression as opposed to the cordon-based charging schemes which have been implemented in practice. Equity issues relating to charging schemes are discussed and the desirability of zero-toll routes is highlighted associated with greater potential political acceptability of charging schemes that do not impose excessive charges upon users (such as minimal or low revenue tolls). A heuristic is developed to toll network links in such a way as to balance the number of links tolled against the revenue required to produce a desired reduction in TNTC such that optimal network flow patterns are approached. 相似文献
14.
M.J. Smith 《Transportation Research Part B: Methodological》1982,16(1):1-3
We consider the traffic equilibrium problem when the travel demand is inelastic and stationary in time. Junction interactions, which abound in urban road networks, are permitted. We prove that the set of equilibria (solutions to the assignment problem) is convex when certain monotonicity and continuity conditions are statisfied at each junction. 相似文献
15.
In this paper, we perform a rigorous analysis on a link-based day-to-day traffic assignment model recently proposed in He et al. (2010). Several properties, including the invariance set and the constrained stability, of this dynamical process are established. An extension of the model to the asymmetric case is investigated and the stability result is also established under slightly more restrictive assumptions. Numerical experiments are conducted to demonstrate the findings. 相似文献
16.
In this paper, we develop a model of travel in tours that joins several locations by travel through a congested network. We develop a microscopic analysis in continuous time of individual benefits obtained by spending time at each of the locations and costs incurred through travel between them. This is combined with a continuous time macroscopic equilibrium model of travel during congested peak periods to show how individuals' travel choices are influenced by the congestion that result from corresponding choices made by others. We show how different travellers can achieve identical net utilities by making different combinations of choices within the equilibrium. The resulting model can be used to investigate the effect on travel behaviour and individual utility of various transport interventions, and we illustrate this by considering the effect of a peak‐period charge that eliminates congestion. 相似文献
17.
The paper considers traffic assignment, with traffic controls, in an increasingly dynamic way. First, a natural way of introducing the responsive policy, Po, into steady state traffic assignment is presented. Then it is shown that natural stability results follow within a dynamical version of this static equilibrium model (still with a constant demand). We are able to obtain similar stability results when queues are explicitly allowed for, provided demand is constant. Finally we allow demand to vary with time; we consider the dynamic assignment problem with signal-settings now fixed. Here we assume that vehicles are very short and that deterministic queueing theory applies, and show that the time-dependent queueing delay at the bottleneck at the end of a link is a monotone function of the time-dependent input profile to the bottleneck. We have been unable to obtain results when dynamic demand and responsive signal control are combined. 相似文献
18.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme. 相似文献
19.
Siriphong Lawphongpanich Donald W. Hearn 《Transportation Research Part B: Methodological》1984,18(2):123-133
This paper presents a convergent simplicial decomposition algorithm for the variational inequality formulation of the asymmetric traffic assignment problem. It alternates between generating minimum path trees based on the cost function evaluated at the current iterate and the approximate solving of a master variational inequality subject to simple convexity constraints. Thus it generalizes the popular Frank-Wolfe method (where the master problem is a line search) to the asymmetric problem. Rules are given for dropping flow patterns which are not needed to express the current iterate as a convex combination of previous patterns. The results of some computational testing are reported. 相似文献
20.
Transport systems in real cities are complex with many modes of transport sharing and competing for limited road space. This work intends to understand how space distributions for modes and interactions among modes affect network traffic performance. While the connection between performance of transport systems and general land allocation is the subject of extensive research, space allocation for interacting modes of transport is an open research question. Quantifying the impact of road space distribution on the performance of a congested multimodal transport system with a dynamic aggregated model remains a challenge. In this paper, a multimodal macroscopic fundamental diagram (MFD) is developed to represent the traffic dynamics of a multimodal transport system. Optimization is performed with the objective of minimizing the total passenger hours traveled (PHT) to serve the total demand by redistributing road space among modes. Pricing strategies are also investigated to provide a higher demand shift to more efficient modes. We find by an application to a bi-modal two-region city that (i) the proposed model captures the operational characteristics of each mode, and (ii) optimal dynamic space distribution strategies can be developed. In practice, the approach can serve as a physical dynamic model to inform space distribution strategies for policy makers with different goals of mobility. 相似文献