首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. However, the electric water pump for internal combustion engine generates much more heat loss than that for hybrid electric vehicle or electric vehicle since it is operated by electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump with an inverter integrated has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of 125°C, water pump speed of 6000 rpm, coolant temperature of 106°C and coolant flow rate of 120 L/min were used as a standard condition. Therefore, the thermal performance of the canned type electric water pump’s motor and inverter was evaluated by comparison with that of mechanical seal type. In the motor, the temperature reduced by over 10°C, and in the inverter, the amount of temperature decrease equaled to the maximum temperature difference, about 18.7°C. Also, canned type electric water pumps of variable materials were compared for the evaluation of thermal transfer performance for variable thermal conductivity of a can. The motor and inverter were cooled lower to 42°C at motor and about 40°C at inverter for reasonable selection of can’s thermal conductivity.  相似文献   

2.
为了分析脉冲路面下轮毂电机偏心对电动汽车平顺性的影响,给出了脉冲路面车轮激励和开关磁阻电机激励的表示。建立了考虑轮毂电机质量和轮毂电机激励的电动汽车平面4自由度振动模型,推导出相应的状态方程和输出向量,确定了脉冲路面平顺性评价指标。实现了脉冲路面车轮激励和轮毂电机激励的仿真,在脉冲路面下进行了4种工况的平顺性仿真和比较。结果表明,脉冲路面下轮毂电机偏心对电动汽车平顺性有着不可忽视的影响,设计电动汽车时需要考虑轮毂电机偏心带来的负效应。  相似文献   

3.
随着电动汽车销量的增加,动力电池的热安全问题日益受到关注,电池温度过高会影响电池的性能,严重时会导致热失控的发生。为研究锂电池的放电特性,探究不同因素对电池组往复流风冷散热的影响规律,基于外接UDF的Fluent仿真计算,利用正交试验,分析了入口风速、冷却空气温度、往复流周期三个参数对电池温度分布的影响规律。研究结果表明往复流周期对电池组温度分布均匀性的影响最大,入口风速对电池组最高温度影响最大,而冷却空气温度影响则相对较小。在此基础上,进一步获得了往复流散热性能的最优匹配参数。  相似文献   

4.
A cooperative control algorithm for an in-wheel motor and an electric booster brake is proposed to improve the stability of an in-wheel electric vehicle. The in-wheel system was modeled by dividing it into motor and mechanical parts, and the electric booster brake was modeled through tests. In addition, the response characteristics of the in-wheel system and the electric booster brake were compared through a frequency response analysis. In the cooperative control, the road friction coefficient was estimated using the wheel speed, motor torque, and braking torque of each wheel, and the torque limit of the wheel to the road was determined using the estimated road friction coefficient. Based on the estimated road friction coefficient and torque limit, a cooperative algorithm to control the motor and the electric booster brake was proposed to improve the stability of the in-wheel electric vehicle. The performance of the proposed cooperative control algorithm was evaluated through a hardware-in-the-loop simulation (HILS). Furthermore, to verify the performance of the proposed cooperative control algorithm, a test environment was constructed for the anti-lock braking system (ABS) hydraulic module hardware, and the performance of the cooperative control algorithm was compared with that of the ABS by means of a HILS test.  相似文献   

5.
为了分析轮毂电机驱动电动汽车簧下质量变大导致的垂向振动负效应问题,根据自主研发可以四轮独立驱动的轮毂电机电动汽车,建立集中电机和轮毂电机驱动汽车的1/4动力学模型,在相同路面输入下,对汽车平顺性评价指标进行对比分析,说明轮毂电机驱动下电动轮结构对车辆垂向性能的影响。研究结果证明,轮毂电机驱动汽车的车身垂向加速度和轮胎动载荷都有所增加,这种变化将对车辆的行驶平顺性造成一定程度的恶化。  相似文献   

6.
目前最常用的电动轮--轮毂电机驱动型电动轮是在电动轮内安装轮毂电机,这将增加电动车的簧下质量,从而降低悬架响应的敏感度;汽车重心发生改变,汽车转向定位参数、制动滑移率的控制参数等都会发生改变,对车辆的平顺性和乘坐舒适性带来不利的影响。针对这些问题,文章设计出驱动-转向一体化的电动轮,将轮毂电机、轮内悬架、转向电机、电机悬挂装置和轮毂集成在车轮上,有效提高电动轮汽车的性能。  相似文献   

7.
电动汽车动力电池散热需求会受到外部环境温度、风速和负载电流变化等因素的影响,如果不及时散热,动力电池的温度会迅速攀升,进而影响电动汽车的驾驶性和安全性。基于此提出一种锂离子电池非线性冷却优化方法。首先,通过对锂离子电池生热、散热机理分析,建立考虑传热系数随冷却液流速变化的锂离子电池集中热模型,通过电池特性测试试验确定电池内阻和熵热系数等热物性参数,并与AMESim模型对比,验证模型的有效性。然后,基于电池冷却系统非线性和易受负载电流变化影响的特征,提出一种考虑电池冷却系统的稳态特性以及参考变量前馈功能和闭环反馈消除静态误差机制的非线性冷却优化方法,并对其稳定性和鲁棒性进行研究。仿真结果表明:在NEDC-HWFET-US06组合工况下,非线性冷却优化方法调节下的电池温度与目标温度的最大偏差较PID方法减小了0.8 K,并且冷却过程的能耗降低了6.3%,具有更好的调节效果。  相似文献   

8.
Electric vehicle is considered to be the solution for energy and environment crisis, but it’s still not competitive enough with conventional vehicles because of the limited energy density and high cost of the power battery. So the energy efficiency is of the most importance for the control of electric vehicles. This paper looks into the energy efficiency optimization problem of electric vehicle driven by four in-wheel motors by developing a comprehensive energy efficiency model of the permanent magnet synchronous motor including the inverter. The calculated efficiency agrees with the measured data quite well. Based on the power loss analysis, the conclusion is drawn that in all driving or braking conditions the total torque requirement should be distributed evenly to all the motors in order to maximize the energy efficiency for electric vehicles driven by permanent magnet synchronous in-wheel motors. Vehicle test results show that the energy efficiency of the evenly distributed torque control is higher than the control strategy proposed by control allocation in literature.  相似文献   

9.
电动汽车热管理已成为保障车辆宽温域环境适应能力、电池热安全和乘员舱热舒适性等方面的关键技术,同时也对电动汽车的能耗,特别是高低温环境下的整车能耗有着显著影响。随着车辆电气化和智能化的快速发展,与传统汽车相比,电动汽车热管理技术和发展路线在动力系统、空调系统等子热力系统和整车层面都呈现出了明显的差异和巨大的进步。综述了国内外电动汽车热管理技术领域重要的研究进展,阐述了电池、电机、热泵空调等子系统和整车集成热管理系统的技术进步,总结了当前电动汽车热管理亟待突破的技术重点和未来发展趋势。  相似文献   

10.
分析车辆的冷却系统流动传热规律,提高冷却系统在车辆部件设计过程中的准确性。文章主要针对商用车的冷却模块作为主要的研究,从流体力学及传热学理论基础上,通过试验分析进行了车辆冷却的传热问题分析和数据测试,希望能够为实际应用提供冷却系统性能的改善指导。  相似文献   

11.
People use cars so frequently that they always consider the air-conditioning, and thermal comfort of the driver and passenger when buying a new car. Therefore accurate simulation of the thermal performance of automobile air conditioners to improve human comfort has become increasingly important. In order to improve the thermal comfort of passengers, 3-D flow motion and thermal behavior within vehicles must be analyzed. In this paper, a numerical simulation was used to investigate thermal behavior in a vehicle. Because air temperature at an air vent is related to the cooling capacity of the air conditioner, the cooling capacity was calculated using ɛ-NTU (effective number of transfer unit) theoretical equations. Using the air temperature relationship between inlet and outlet vents as boundary conditions, a 3-D unsteady κ-ɛ turbulent model was used to give a transient analysis simulation of the temperature field and flow conditions in a vehicle’s passenger cabin. Cooling cycle analysis and conjugate heat transfer analysis at the inside surface of the cabin’s ceiling, floor and sides were also considered. The predicted temperature distributions in the vehicles passenger cabin were in good agreement with those obtained experimentally.  相似文献   

12.
独立悬架-电动轮模块的双横臂悬架机构设计   总被引:1,自引:0,他引:1  
陈辛波  万钢  余卓平  周平 《汽车工程》2004,26(5):513-515,520
四轮驱动电动汽车采用由轮毂电机、转速传感器、制动盘和双横臂悬架机构组成的结构相同的独立悬架-电动轮模块,可大幅度减少零部件种类,降低制造成本。文中按空间机构理论导出了双横臂悬架导向机构运动分析与设计的基本公式,并研制成简明实用的视窗式分析与设计系统。提出了可完全消除附加转向干涉的非转向轮双横臂悬架导向机构。将这些研究成果具体应用于国内第一台四轮驱动燃料电池微型汽车概念平台“春晖一号”和样车“春晖二号”的研制,取得了良好效果。  相似文献   

13.
A reduction gear of an in-wheel motor vehicle is mounted between a traction motor and wheel, to increase the wheel torque and decrease the rotational speed. To improve the energy efficiency of a vehicle, the determination of the optimal gear ratio is an important factor in the design of the reduction gear. This paper presents an optimization procedure to obtain the optimal gear ratio of an in-wheel motor vehicle that minimizes the electric energy consumption. Using a model-based design, a dynamic simulation model of a vehicle was developed for an analysis of the energy efficiency. Owing to a variation in energy efficiency across drivers, a probabilistic driver model that includes driver characteristics is employed. To reduce excessive calculations, a surrogate model was constructed for the optimization. The optimal gear ratio for saving energy was obtained, and the usefulness of the proposed optimization procedure was shown through a comparison of the results of the optimal gear ratio and the energy efficiency achieved between deterministic and probabilistic approaches.  相似文献   

14.
电动车热泵空调系统的设计分析   总被引:5,自引:0,他引:5  
谢卓  陈江平  陈芝久 《汽车工程》2006,28(8):763-765
对比分析电动车热泵空调系统同燃油汽车空调系统的区别,比较采用不同制冷剂和压缩机电动车热泵空调系统,提出开发适合我国国情的高效节能电动车热泵空调的设计方法。  相似文献   

15.
纯电动汽车整车控制器进展   总被引:3,自引:0,他引:3  
在广泛研究国内外纯电动汽车整车控制器的工作原理和系统结构的基础上.总结了如下特点:国外纯电动汽车整车控制器主要用于结构复杂的四轮驱动纯电动汽车和轮毂电机纯电动汽车中。对于单电机驱动的纯电动汽车,通常由电机控制器代替整车控制器实现控制功能。在国内市场没有纯电动汽车整车控制器产品的生产和销售.整车控制器停留在试验室研发阶段。本文可为企业开发出口纯电动汽车整车控制器和国家制订标准提供参考。  相似文献   

16.
电动轮驱动的轿车取消机械式差速器后,使得各车轮运动状态相互独立,为保证车辆行驶中各车轮的转速协调,必须解决差速技术问题。文章介绍了采用电动轮驱动的轿车实车差速性能试验的过程,表明电动轮控制器可适应转向行驶和车轮半径不等引起的差速工况,实现很好的差速性能,指出该电动轮控制器可以在各种工况下实现良好的自适应差速性能。  相似文献   

17.
为了提高分布式驱动电动汽车的经济性和续航里程,对4个轮毂电机驱动转矩优化分配问题进行研究。通过轮毂电机台架试验得到轮毂电机的驱动效率特性,分析转矩优化分配实现节约整车能耗的可行性;建立侧重提高电机效率的目标函数,使电机转矩处于电机效率Map图中的高效区;建立侧重提高电机响应速度的目标函数,减小转矩分配瞬间电流波动过大带来的能耗;基于模糊理论设计以电机效率为变量的权重函数,实时调节权重来协调2种目标函数,提出一种转矩节能优化分配方法,得到最优的轴间转矩分配系数。在后轴驱动、平均分配、优化分配3种分配方式下进行整车能耗的ECE城市循环工况对比仿真分析。结果表明:提出的节能优化分配方法通过实时优化驱动电机的转矩,避免了电机工作在转矩过大和过小的低效区,提高了整个驱动系统的能量利用率,相比于后轴驱动和平均分配整车能耗效率提高了5.91%和10.54%;实车试验验证了转矩节能优化分配算法的节能效果,优化分配相比另外2种分配方式整车能耗效率分别提高了3.66%和8.58%。  相似文献   

18.
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.  相似文献   

19.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   

20.
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,此时虽可通过截断异侧对应电机制动力矩输出来保证行驶方向,但会使车辆制动力大幅衰减或丧失,同样不利于行车安全。为了解决此问题,提出并验证一种基于电动助力液压制动系统的制动压力补偿控制方法,力图有效保证整车制动安全性。以轮毂电机驱动汽车为例,首先建立了整车动力学模型以及轮毂电机模型,通过仿真验证了回馈制动失效的整车失稳特性以及电机转矩截断控制的不足;然后,建立了电动助力液压制动系统模型,并通过原理样机的台架试验验证了模型的准确性;接着,基于滑模控制算法设计了制动压力补偿控制器,并在单侧电机再生制动失效后的转矩截断控制基础上完成了液压制动补偿控制效果仿真验证;最后,通过实车试验证明了所提控制方法的有效性和实用性。研究结果表明:在分布式驱动电动汽车单侧电机再生制动失效工况下,通过异侧电机转矩截断控制和制动系统的液压主动补偿,能够使车辆快速恢复稳定行驶并满足制动强度需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号