首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
在翻滚事故中,车辆的主要承载件是车顶及其支承结构。只有这些结构有足够的刚度才能保证翻滚事故中乘员必要的生存空间。我国将颁布顶盖挤压标准,对车顸刚度及检测方法提出要求。本文通过有限元分析法进行预测,物理实验结果表明,该方法是可行的。  相似文献   

2.
Analyses of Vision-based Lateral Control for Automated Highway System   总被引:3,自引:0,他引:3  
The stability and performance of a vision-based vehicle lateral control system are analyzed. Effects of look-ahead distance, vision delay, and vehicle speed on the performance of vision feedback control system are examined by using frequency domain and time domain methods. A measurement model of the vision system is derived from the point of view of multiple sensors. The quantization error of the vision system is analyzed and the way of extracting essential information for control is studied. Based on this analysis, some guidelines for the design of vision-based controllers are proposed. A design example is further illustrated for a vision system with a substantial time delay.  相似文献   

3.
SUMMARY

The stability and performance of a vision-based vehicle lateral control system are analyzed. Effects of look-ahead distance, vision delay, and vehicle speed on the performance of vision feedback control system are examined by using frequency domain and time domain methods. A measurement model of the vision system is derived from the point of view of multiple sensors. The quantization error of the vision system is analyzed and the way of extracting essential information for control is studied. Based on this analysis, some guidelines for the design of vision-based controllers are proposed. A design example is further illustrated for a vision system with a substantial time delay.  相似文献   

4.
Vehicle distance estimation using a mono-camera for FCW/AEB systems   总被引:2,自引:0,他引:2  
For robust vision-based forward collision warning (FCW) and autonomous emergency braking (AEB) systems, not only reliable detection performance including high detection rate and low false positives but also accurate measurement output of a target vehicle is required. Especially, in order to reduce false alarm or activation of FCW/AEB systems, the systems require the precise measurement output of a target object, such as position, velocity, acceleration, and time-to-collision (TTC). In this study, we developed a measurement estimation algorithm of a target vehicle using a monocular camera. This method estimates two cases of vehicle widths for a target vehicle by using the detected lane information and a pin-hole camera model. After that, the position, velocity, acceleration, and TTC of a target vehicle are estimated by using a Kalman filter for the each estimated vehicle width. To improve robustness, the both estimation results using the detected lane information and the pinhole camera model are fused. This estimation algorithm was evaluated and compared with the state-of-the-art technology. As a result, the proposed measurement output estimation method can improve the performance of the FCW/AEB systems.  相似文献   

5.
由于交通事故中侧滚翻事故的死亡率非常高,为达到车辆发生侧翻时对乘员的保护,充分考虑我国国情,2011年1月14日,我国正式发布GB26134--2010《乘用车项部抗压强度》国家强制性标准,明确对车身强度试验的准备和实施过程及要求,文章以标准规定的试验方法为主要内容,详细介绍了试验的准备和实施过程,并结合美国联邦机动车法规FMVSS216a提出了汽车顶部抗压强度法规的发展趋势。  相似文献   

6.
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.  相似文献   

7.
自卸车侧翻稳定性分析   总被引:1,自引:0,他引:1  
本文以一起整车侧翻事故为例,从自卸车的使用环境、操作方法、车辆结构等方面,分析自卸车侧翻的原因,并为减少此类侧翻问题提出了自己的建议。  相似文献   

8.
为提升半挂汽车列车在高速公路弯道下坡路段的运行安全,采用TruckSim仿真软件,构建了车辆模型、道路模型和驾驶人动力学仿真模型;基于蒙特卡罗可靠性分析法,分别建立了半挂汽车列车发生侧滑失效、侧翻失效、折叠失效和系统失效的功能函数,并选取设计速度80 km·h-1的高速公路为研究路段,通过进行大量车辆动力学仿真试验,对不同圆曲线半径、纵坡坡度、路面附着系数、车速和车辆总质量对半挂汽车列车的运行安全的影响进行了数值分析。研究结果表明:半挂汽车列车发生侧滑和侧翻的概率随着圆曲线半径的增加而显著降低,在一般最小半径400 m的情况下,半挂汽车列车发生侧滑失效和侧翻失效的概率趋近于0;随着下坡坡度的增加,半挂汽车列车发生侧滑失效和侧翻失效的概率基本呈线性增长趋势;车速对于半挂汽车列车运行安全的影响尤为显著,当车速均值由60 km·h-1增加到90 km·h-1时,发生侧滑失效和侧翻失效的概率分别增加了634倍和336倍;车辆总质量的增加对半挂汽车列车侧翻有显著影响;在路面附着系数较低的条件下,半挂汽车列车的主要事故形态为侧滑和折叠,在路面附着系数较高的情况下,半挂汽车列车的主要事故形态为侧翻。因此,在道路设计中,应避免极限最小半径与陡坡组合,严格限速和限载可确保半挂汽车列车的运行安全性能。  相似文献   

9.
This study reports on the effect of vehicle tumble-home (side body inclination) on roof strength. The steep inclination of the side body of a vehicle increases its roof strength. Comprehensive analysis of the impact of high roof strength driven by the steep inclination on dynamic roof strength in rollover is described. Here, we have developed a numerical model using the ADAMS, which is capable of characterizing both of the static and the dynamic roof strength. According to the FMVSS 216 protocol, we achieve the strength to weight ratio (SWR; static roof strength) by applying loading plates to the roof of a vehicle. The Controlled Rollover Impact System (CRIS) allows us to quantitatively characterize the displacements of the top end of A-pillar and B-pillar, thus determining the dynamic roof strength by comparing the results. We demonstrated that the roof intrusion was one of the most critical causes which lead to injuries of occupants fastening seat belts. Our analysis revealed that the increase of the side body inclination of vehicles enhanced the static roof strength whereas it could not reduce the roof displacement (intrusion) in the dynamic rollover.  相似文献   

10.
Design of a rollover index-based vehicle stability control scheme   总被引:1,自引:0,他引:1  
This paper presents a rollover index (RI)-based vehicle stability control (VSC) scheme. A rollover index, which indicates an impending rollover, is developed by a roll dynamics phase plane analysis. A model-based roll estimator is designed to estimate the roll angle and roll rate of the vehicle body with lateral acceleration, yaw rate, steering angle and vehicle velocity measurements. The rollover index is computed using an estimated roll angle, estimated roll rate, measured lateral acceleration and time-to-wheel lift. A differential braking control law is designed using a direct yaw control method. The VSC threshold is determined from the rollover index. The effectiveness of the RI, the performance of the estimator and the control scheme are investigated via simulations using a validated vehicle simulator. It is shown that the proposed RI can be a good measure of the danger of rollover and the proposed RI-based VSC scheme can reduce the risk of a rollover.  相似文献   

11.
基于仿真分析的汽车侧翻风险研究   总被引:1,自引:0,他引:1  
侧翻事故是汽车产品缺陷可能引发的一种典型风险.文中应用ADAMS软件建立仿真模型,模拟车辆侧翻事故过程以研究其发生机理,并通过正交试验分析了侧翻风险与其主要影响因素之间的关系.  相似文献   

12.
汽车侧翻和滚翻事故建模研究   总被引:5,自引:0,他引:5  
祝军  李一兵 《汽车工程》2006,28(3):254-258
分析汽车在侧翻和滚翻过程中的受力状态和轮胎或车身与路面的相互作用方式,建立汽车侧翻和滚翻的运动学和动力学模型,揭示汽车临界侧翻碰撞力与持续作用时间等参数的关系,推导侧翻车辆侧向速度的范围,确定滚筒模型中关键参数的选取方法。事故案例表明模型在实际应用中效果良好、定量准确、直观性强。  相似文献   

13.
Before 2009, rollover in vehicle accidents had not been significantly studied not only because its rate is lower than other types of accidents but also because it had been easy to meet the rollover regulation, the FMVSS 216 Roof Crush Resistance target. The regulation only requires that the strength-to-weight ratio (SWR) be 1.5, i.e., it was acceptable when the roof could withstand a force of only 1.5 times the vehicle??s weight. In other words, rollover is not considered an important safety factor. However, presently, the situation has completely changed. Rollover is now considered a key safety factor. Recently, the number of rollover incidences has been increasing, reaching as much as the number of front, side and rear accidents. Furthermore, the IIHS has begun to require that the roof must withstand a force of 4.0 times the vehicle??s weight, a more severe restriction than FMVSS. To satisfy this requirement, many manufacturers, universities and institutes are studying the topic. This paper focuses on changing the body structure to minimize injury to the occupant when rollover occurs and help rollover safety performance become excellent. This paper draws on a simple analysis that is based on general factors: changes in the material, the addition of welds and additional reinforcements. The best result will be determined, as described by this paper.  相似文献   

14.
A roof crush test has been utilized to reduce passengers’ injuries from a vehicle rollover. The Federal Motor Vehicle Safety Standards (FMVSS) 216 and the Insurance Institute for Highway Safety (IIHS) perform actual vehicle tests and evaluate the vehicle’s ratings. Nonlinear dynamic response structural optimization can be employed not only for achievement of a high rating but also minimization of the weight. However, the technique needs a huge computation time and cost because many nonlinear dynamic response analyses are required in the time domain. A novel method is proposed for nonlinear dynamic response structural optimization regarding the roof crush test. The process of the proposed method repeats the analysis domain and the design domain until the convergence criteria are satisfied. In the analysis domain, the roof crush test is simulated using a high fidelity model of nonlinear dynamic finite element analysis. In the design domain, a low fidelity model of linear static response structural optimization is utilized with enforced displacements that come from the analysis domain. Correction factors are employed to compensate the differences between a nonlinear dynamic analysis response and a linear static analysis response with enforced displacement. A full-scale vehicle problem is optimized with a constraint on the rigid wall force from the analysis in the design domain.  相似文献   

15.
只有较少的交通事故数据资源被用于建立基于碰撞速度信息的乘员损伤模型,致使所得到的模型精度差。为此,提出了基于车辆变形深度的乘员损伤模型。对美国不同制造年代和车辆级别的事故数据进行聚类分析,论证出车辆变形深度与乘员损伤风险具有相关性。以车辆变形深度为自变量,通过回归分析得到乘员损伤模型。不同种类车辆的乘员损伤模型拟合精度R2约为0.9,证明了该模型的正确性。为进一步验证,以此模型为基础,评价智能驾驶系统的有效性。以自动紧急制动系统为例,对比基于变形深度和速度变化量信息2种方法的有效性计算结果。结果表明:2组结果的平均误差不超过1%,验证了基于变形深度的乘员损伤模型的准确性。该模型仅需要事故数据库中准确的变形深度信息,能够获得更多的事故数据支持,从而可以更好地适应于不同类别智能驾驶系统的评价需求。  相似文献   

16.
为保证汽车侧倾稳定角试验过程中的车辆安全,设计开发了一种用于防止试验车辆发生侧翻安全事故的非接触式防翻装置。该装置通过液压缸驱动防护支撑板,实现支撑板与侧翻试验台上的被试车辆保持一定安全距离的跟随运动,避免车辆达到侧倾稳定临界角时发生侧翻。经现场试验表明,该装置能够实现设计功能,在不影响试验结果的情况下保证车辆安全。  相似文献   

17.
基于双目立体视觉原理,提出了一种安全车辆间距测量方案.该系统根据目标车辆在左右摄像头所获得的立体图像对应的不同坐标,计算出目标车辆到摄像头的距离.试验结果表明,该测距方案测量精度高、测量范围广,能满足智能交通中车辆安全距离测量的实际需要,是一种有效的前方车距测量方案.本文的研究方法,同样适用于对车辆前方其他目标物的距离测量.  相似文献   

18.
Rollover mitigation for a heavy commercial vehicle   总被引:1,自引:0,他引:1  
A heavy commercial vehicle has a high probability of rollover because it is usually loaded heavily and thus has a high center of gravity. An anti-roll bar is efficient for rollover mitigation, but it can cause poor ride comfort when the roll stiffness is excessively high. Therefore, active roll control (ARC) systems have been developed to optimally control the roll state of a vehicle while maintaining ride comfort. Previously developed ARC systems have some disadvantages, such as cost, complexity, power consumption, and weight. In this study, an ARC-based rear air suspension for a heavy commercial vehicle, which does not require additional power for control, was designed and manufactured. The rollover index-based vehicle rollover mitigation control scheme was used for the ARC system. Multi-body dynamic models of the suspension subsystem and the full vehicle were used to design the rear air suspension and the ARC system. The reference rollover index was tuned through lab tests. Field tests, such as steady state cornering tests and step steer tests, demonstrated that the roll response characteristics in the steady state and transient state were improved.  相似文献   

19.
This paper focuses on a combination of a reliability-based approach and an empirical modelling approach for rollover risk assessment of heavy vehicles. A reliability-based warning system is developed to alert the driver to a potential rollover before entering into a bend. The idea behind the proposed methodology is to estimate the rollover risk by the probability that the vehicle load transfer ratio (LTR) exceeds a critical threshold. Accordingly, a so-called reliability index may be used as a measure to assess the vehicle safe functioning. In the reliability method, computing the maximum of LTR requires to predict the vehicle dynamics over the bend which can be in some cases an intractable problem or time-consuming. With the aim of improving the reliability computation time, an empirical model is developed to substitute the vehicle dynamics and rollover models. This is done by using the SVM (Support Vector Machines) algorithm. The preliminary obtained results demonstrate the effectiveness of the proposed approach.  相似文献   

20.
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor–semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim? software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号