共查询到20条相似文献,搜索用时 62 毫秒
1.
基于主成分分析的舰船装备维修费组合预测 总被引:1,自引:0,他引:1
针对基于回归的组合预测模型,由于舰船装备维修费预测时可利用的样本小、可用的单项预测方法多,容易导致预测模型的数量比用于组合预测的样本数量多,出现回归系数无法估计的问题。在建立基于回归的舰船装备维修费组合预测模型前,首先对各单项预测方法预测结果进行主成分分析,建立舰船装备维修费实际值在选取主成分上的回归模型,给出基于主成分分析的组合预测模型;然后针对主成分分析中根据主成分的累积贡献率确定主成分数量具有一定的主观性,建议采用AIC确定主成分的数量;最后,采用实例对给出的方法进行分析和验证。结果表明:在舰船装备维修费组合预测中,该方法不仅解决了预测模型多于用来组合预测的样本数量问题,而且还可以解决单项预测方法之间的共线性问题,且其预测性能明显优于常用的组合预测模型。 相似文献
2.
基于RBF神经网络的港口货物吞吐量预测 总被引:2,自引:0,他引:2
将人工神经网络理论引入港口货物吞吐量远景观测,并依据,1978-1998年北方某大港主要要经济腹地的相关经济变量的历史数据建立RBF神经网络预测模型,最后利用模型对未来15该港货物吞吐量进行了预测。 相似文献
3.
4.
5.
6.
7.
8.
9.
舰船装备维修费具有一定的规律性,同时也有一定的随机性,导致很难进行准确估计。为了提高舰船装备维修费精度,减少舰船装备维修估计偏差,设计了基于数据挖掘的舰船装备维修费估计模型。首先分析当前舰船装备维修费估计模型的各种局限性,然后收集舰船装备维修费历史数据,并对舰船装备维修费历史数据进行处理,得到更加有规律的舰船装备维修费数据,然后采用数据挖掘技术建立舰船装备维修费估计模型,并采用实际舰船装备维修费数据进行验证性实验。本文模型的舰船装备维修费估计精度高,舰船装备维修费的估计误差远小于当前其他舰船装备维修费估计模型,结果证明本文方法是一种精度高,误差小的舰船装备维修费估计模型。 相似文献
10.
11.
12.
基于灰色系统理论,使用海军舰船维修费用历史数据建立初值修正的GM(1,1)模型,利用少量数据中的显信息和隐信息,避免复杂的相关关系,克服了原始数据的离散性,得到较高精度的拟合效果,并对海军舰船维修费用进行短期预测。将预测结果加入等维信息模型,对未来费用支出进行动态预测。结果表明:其精度优于传统模型。 相似文献
13.
14.
15.
BP神经网络在航道网总运量预测中的应用 总被引:5,自引:0,他引:5
在对神经网络算法进行分析的基础上,以区域历年货运量值为样本,构造时间序列法的神经网络预测模型,并预测区域航道网总运量。 相似文献
16.
RBF神经网络在传感器故障诊断中的应用研究 总被引:3,自引:0,他引:3
提出一种基于RBF神经网络的传感器在线故障诊断方法,用某气囊隔振系统隔振装置中大量的传感器数据进行了仿真实验,验证了方法的可行性.通过对每个传感器建立单独的神经网络预测模型,实现多传感器的故障诊断. 相似文献
17.
为了进一步提高舰船级维修能力,探讨了将交互式电子技术手册IETM(Interactive ElectronicTechnical Manual)技术应用于舰船级维修中的便携式维修辅助PMA(Portable Maintenance Aids)设备的方法,研究了其潜在优势。提出了IETM与PMA在舰船综合保障系统SILSs(Ship Integrated Logis-tics Support Systems)中结合应用首先需要解决的问题是功能增值问题。 相似文献
18.
基于BP神经网络的故障诊断技术在装备维修中的应用 总被引:2,自引:0,他引:2
传统故障诊断方法在装备保障中的诸多局限性。文章介绍了基于BP模型的神经网络,研究了基于BP模型神经网络的故障诊断推理方法,并利用Matlab仿真软件对结果进行了运行和计算。结果证明,基于BP神经网络的故障诊断技术对装备故障诊断是行之有效的。 相似文献
19.
针对模糊识别系统的不足,为了提高辐射源识别系统的识别正确率,构建了基于模糊RBF神经网络的辐射源识别系统,提出了一种等价型模糊RBF神经网络的结构和学习算法,采用五层神经网络结构来实现模糊系统的模糊化和规则推理,神经网络的所有节点和参数对应了模糊系统的隶属函数和推理过程.在仿真实验中,分别采用模糊识别系统、并联型模糊RBF神经网络、结构等价型模糊RBF神经网络进行辐射源识别,给出了三种算法在相同噪声环境下的仿真结果,表明等价型模糊RBF效神经网络有较高的正确识别率,具有更强的抗干扰能力,但运算量相对较大. 相似文献